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Resetting of epigenetic marks, such as DNA methylation, in germ cells or early

embryos is not always complete. Epigenetic states may therefore persist, decay

or accumulate across generations. In spite of mounting empirical evidence for

incomplete resetting, it is currently poorly understood whether it simply

reflects stochastic noise or plays an adaptive role in phenotype determina-

tion. Here, we use a simple model to show that incomplete resetting can

be adaptive in heterogeneous environments. Transmission of acquired epige-

netic states prevents mismatched phenotypes when the environment changes

infrequently relative to generation time and when maternal and environ-

mental cues are unreliable. We discuss how these results may help to

interpret the emerging data on transgenerational epigenetic inheritance in

plants and animals.
1. Introduction
Epigenetic mechanisms produce persistent phenotypic effects. At the cellular

level, epigenetics typically refer to molecular mechanisms that are physically

associated with DNA and that contribute to gene expression, including histones,

DNA methylation and small RNAs. Cells acquire different epigenetic states as

part of normal development. To prevent these epigenetic modifications from

being passed on to subsequent generations, the life cycle of animals and plants

usually involves at least one instance of epigenetic resetting [1–4]. For example,

the zygotic DNA in mammals first undergoes extensive de-methylation followed

by re-methylation in the early embryo and in the primordial germ cells [3]. In

plants, reprogramming may be restricted to the male germline and companion

cells, with no global resetting of methylation in seed germ cells [1,2,4,5]. Recent

data from both animals and plants indicate that epigenetic resetting is not

always complete and hence that acquired epigenetic states may be transmitted

from parents to offspring (‘germ-line epigenetic inheritance’ or ‘incomplete epige-

netic resetting’ or ‘incomplete epigenetic reprogramming’; e.g. [6–14] reviewed in

[4,5,15–19]).

Is incomplete epigenetic resetting an occasional phenomenon with neutral or

negative effects on fitness, or can incomplete resetting be an adaptation [17,20–

26]? The consequence of incomplete epigenetic resetting in germ cells is that

environmental conditions encountered in one generation can have effects on the

development of the next generation or even many generations later. It is generally

accepted that effects which span a single generation (parental effects) may increase

fitness by adjusting offspring phenotype to local conditions [27–31]. More stable

forms of epigenetic inheritance have been suggested to serve a similar function

(e.g. [18,21,32,33]).

A number of recent models have explored the evolutionary dynamics of epi-

genetic inheritance (e.g. [34–36], reviewed in [26]). Most models study how the

extent of incomplete epigenetic resetting influences the spread and maintenance

of genetic or epigenetic variation. For example, Geoghegan & Spencer [36,37]

modelled a two-state environment with epigenetic resetting taking place in the

gametes before formation of zygotes, followed by random dispersal and selection.
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This model showed that the frequency of environments and

the rate of resetting in the gametes jointly determined the

likelihood that an epigenetic variant (‘epiallele’) would invade

a resident population. When one environment was rare, resetting

according to the environment of the gamete (i.e. the parental

environment) produced a phenotype that showed a high likeli-

hood of being mismatched in the next generation, which

reduced the likelihood of invasion by the epigenetic variant.

An alternative approach is to let the extent of incomplete

resetting evolve as a component of heredity. This is the approach

we take in this paper (see also [24,38–40]). Specifically, we

develop a simple model of an asexual organism with a single

period of epigenetic resetting during germ cell formation. We

consider a phenotype that is under selection depending on its

match to the environment, and whose expression is determined

by the value of an epigenetic state. The environment is both the

cause of epigenetic modification and the cause of selection.

Using an analytical model and individual-based simulations,

we investigate the evolution of incomplete resetting in relation

to the rate of environmental change, the specificity of environ-

mental induction of epigenotype and phenotype, and the

strength of selection.
2. Analytical model
We begin by describing a simple analytical model of acontinuous

phenotype evolving in a temporally heterogeneous environment,

using a similar approach to that of Rivoire & Leibler [38].
(a) Phenotypes, inheritance and selection
We work with asexual haploids characterized by an epigenetic

mark with size yt in year t. The epigenetic state or mark could

be, for example, methylation of a DNA sequence (e.g. a promo-

ter) that can vary from completely unmethylated to fully

methylated. The epigenetic value translates directly into the

phenotype, which is also yt. The environment in year t has

state xt, and selection favours a close match between phenotype

and state according to a Gaussian fitness function:

w(yt) ¼ w0 exp �1
2

(yt � xt)
2

s2
w

" #
: (2:1)

Here w0 is a baseline fitness.

The level of the epigenetic state, and hence the phenotype,

is determined by inheritance from the previous generation

and an environmentally induced effect, as follows:

ytþ1 ¼ hyt þmt þ dt: (2:2)

The evolvable parameter h models the degree of epige-

netic resetting (i.e. 0 ¼ complete resetting, 1 ¼ no resetting),

mt is a maternal environmental effect on the epigenetic

state and dt represents developmental noise. We assume

that the latter is Gaussian with mean zero and variance s2
d,

independent of the environmental and epigenetic state:

dt � N(0, s2
d): (2:3)

We model the maternal effect as a linear reaction norm

with respect to the mother’s perceived environmental state

xt þ 1t, where the maternal error 1t is assumed to be Gaussian

with mean zero and variance s2
1:

mt ¼ m0 þm1(xt þ 1t) (2:4a)
and

1t � N(0, s2
1): (2:4b)

So m0 is the baseline maternal effect if the mother does

not respond to her environment, and m1 describes how

much the maternal effect changes for a change in one unit

of the environmental state.

Given maternal marks yt, the distribution of marks among

their offspring is then given by the Gaussian

H(ytþ1jyt) ¼ (2ps2
H)�1=2 exp �1

2

(ytþ1 � hyt � �mt)

s2
H

� �
, (2:5)

where

�mt ¼ m0 þm1xt (2:6a)

and

s2
H ¼ m2

1s
2
1 þ s2

d: (2:6b)

Assuming the population distribution of marks in year t is

Gaussian with mean mt and variance s2
t , i.e.

Gt(yt) ¼ (2ps2
t )�1=2 exp �1

2

(yt � mt)
2

s2
t

" #
, (2:7)

then the distribution in the next year is also Gaussian

Gtþ1(ytþ1) ¼ �w�1
t

ð
H(ytþ1jyt)w(yt)Gt(yt) dyt: (2:8)

The mean fitness �wt normalizes the distribution and is given

by

�wt ¼
ð

w(yt)Gt(yt) dyt ¼ w0

ffiffiffi
a
p

exp �1
2

(mt � xt)
2

s2
w þ s2

t

" #
, (2:9)

where

a ¼ s2
w

s2
w þ s2

t
: (2:10)

The recursions for the mean and variance of the marks are

given by

mtþ1 ¼ hamt þ h(1� a)xt þ �mt (2:11a)

and

s2
tþ1 ¼ h2as2

t þ s2
H : (2:11b)

The long-term growth factor (i.e. geometric mean fitness)

of the population is the expected value (operator E, taken

over the whole time series) of the log-mean fitness:

l ¼ E[ ln (�wt)] ¼ ln (w0)þ 1

2
ln (â)� 1

2

E[(mt � xt)
2]

s2
w þ ŝ2

: (2:12)

The hats indicate that the equilibrium value of the epige-

netic mark variance recursion (2.11b) should be used. This is

given by

ŝ2¼1

2
(s2

H�(1�h2)s2
wþ[(s2

Hþ(1�h2)s2
w)2þ4h2s2

Hs
2
w]1=2):

(2:13)

Note that when h ¼ 0, ) ŝ2 ¼ s2
H :
(b) The environment
To derive the conditions that favour incomplete epigenetic

resetting (i.e. h . 0), we need to make assumptions about
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the dynamics of the environmental state xt. We assume that

the environment is autocorrelated according to a first-order

autoregressive model, where mx is the long-term average

environmental state, r (0 � r , 1) is the degree of correlation

between successive generations, and et is a Gaussian error

term

xtþ1 ¼ rxt þ (1� r)mx þ et (2:14a)

and

et � N(0, s2
e ): (2:14b)

This standard model has the following long-term properties:

E(xt) ¼ mx, (2:15a)

var(xt) ¼
s2

e

(1� r2)
(2:15b)

and r(xtþ1, xt) ¼
cov(xtþ1, xt)

var(xt)
¼ r: (2:15c)

Here r is the autocorrelation between the environmental states

of subsequent generations. We can choose mx and s2
e such that

in practice x and y are never negative, which is appropriate for

many epigenetic mechanisms, including DNA methylation.

Note that r ¼ 0 implies that the environments of subsequent

years are uncorrelated.
(c) Main results
The mean square term in (2.12) can be completed by solving

the recursions (2.11a) and (2.14a) for mt and xt, squaring their

difference and taking expectations. Plugging the result in

(2.12) gives

l ¼ ln (w0)þ 1

2
ln (â)

� 1

2
s2

e
A(B2r=(1� r2)� 2B� r)þ B2=(1� r2)þ 1

(s2
w þ ŝ2)(1� A2)(1� Ar)

� 1

2

m0 � C
1� A

� �2

, (2:16)
where

A ¼ ha, (2:17a)

B ¼ hþm1 � r (2:17b)

and C ¼ (1� h�m1)mx: (2:17c)

We can now find the equilibrium values of the evolvable

parameters h, m0 and m1 by maximizing l.

The optimal baseline maternal effect is given by

m�0 ¼ C ¼ (1� h�m1)mx: (2:18)

Substituting equation (2.18) into (2.16) eliminates the last

term on the right, and we continue working with the trun-

cated formula.

Selection favours incomplete resetting (h . 0) if @l/@h . 0

when evaluated at h ¼ 0. It turns out that

@l

@h

����
h¼0

¼ (r�m1)s2
e (m2

1s
2
1 þ rm1s

2
w þ s2

d)

(1� r2)(m2
1s

2
1 þ s2

w þ s2
d)

2
: (2:19)

Note that all factors except for (r 2 m1) are always posi-

tive. Thus, incomplete resetting evolves if r . m1. The next

step is therefore to ask if selection on m1 favours r . m1,

and this can be checked by inspecting the sign of @l/@m1

evaluated at h ¼ 0 and m1 ¼ r:

@l

@m1

����
h¼0,m1¼r

¼ �rs2
1(r2s2

1 � s2
e þ s2

w þ s2
d)

(r2s2
1 þ s2

w þ s2
d)

2
: (2:20)

This shows that selection favours lower values of m1 at

h ¼ 0 and m1 ¼ r when the second factor in the numerator

is positive, i.e. when

r2s2
1 . s2

e � s2
w � s2

d: (2:21)

Thus, selection favours incomplete resetting if the

environmental autocorrelation and the maternal error rate

are sufficiently high, as measured by the product r2s2
1

(figure 1). Moreover, this condition is more likely to hold

when selection is weak (higher s2
w ) and developmental
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noise is not too small relative to the environmental fluctu-

ations (i.e. s2
w þ s2

d � s2
e ). Figure 2 shows how the optimal

partial resetting and complete resetting follows the environ-

mental variation and the long-term fitness differences

(expected population growth rate) between the two strategies.
3. Individual-based simulations
To complement and verify the analytical results, we make use

of individual-based simulations to model the evolution of

incomplete resetting in either a spatially or a temporally

heterogeneous environment.
(a) Phenotypes, inheritance and selection
We model a population of asexual haploid organisms with

two possible phenotypes, z ¼ 0 and z ¼ 1. Each individual

has an epigenetic state, y, which is a continuous variable. In

contrast to the analytical model, the epigenetic state is trans-

lated into one of two discrete phenotypes; if an offspring’s

epigenetic state y exceeds a threshold value, the offspring

develops phenotype 1 and otherwise it develops phenotype

0. We fix the threshold to zero, such that negative values of

y produce phenotype 0 and positive values produce pheno-

type 1. This implies that the state will decay in the absence

of environmentally induced effects if there is incomplete

resetting, which can be interpreted as (gradual) reversal to

a default epigenetic state (e.g. of a target gene(s) that makes

phenotype determination random (i.e. y ¼ 0)). Conversely,

under complete resetting, offspring phenotype would be dic-

tated by the environmentally induced effect on the epigenetic

state. Unlike the analytical model, the environment takes one

of two discrete states (E [ f0,1g). If the individual’s phenotype

matches the environment (i.e. if z ¼ E ¼ 0 or z ¼ E ¼ 1), its

viability is 1, while if its phenotype does not match the
environment (i.e. if z ¼ 1 and E ¼ 0 or z ¼ 0 and E ¼ 1), its

viability is reduced to 1 2 s.

The epigenetic state transmitted to the following gener-

ation is determined by the extent of incomplete epigenetic

resetting following sequestration of germ cells from somatic

cells (h), and environment-dependent modification of the epi-

genetic state, mi (where i ¼ 0 or 1). These variables are

assumed to be determined by three stably inherited (genetic)

loci. As in the analytical model, the epigenetic state of off-

spring is a function of the epigenetic state of the mother,

the degree of epigenetic resetting, and a maternal effect that

depends on the mother’s environment with an added devel-

opmental noise (equation (2.2); electronic supplementary

material, figure S1a).

In the simulation model, we also consider two alternative

scenarios. In the first, parental environment-dependent modi-

fication occurs before resetting and, in the second, offspring

environment-dependent modification occurs after epigenetic

resetting (electronic supplementary material, figure S1b,c).

Possible mechanisms that could result in either of these

scenarios have recently been described in the literature

(see Introduction).
(b) The environment
We construct simulations in a spatially or temporally hetero-

geneous environment. In the spatial model, the population is

sub-divided into smaller patches that are connected by indi-

vidual dispersal at rate D. The proportion of patches of

type 0 is q and that of type 1 is 1 2 q. We consider a range

of dispersal rates when patch types are equally common

and we also investigate how incomplete resetting evolves

when patch types occur at different frequencies. The temporal

environment is cyclical with a period 2n, such that the

environment is in state 0 for n breeding cycles followed

by n breeding cycles where the environment is in state 1.

http://rspb.royalsocietypublishing.org/
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The environmental specificity of the inducing factor is deter-

mined by the parameter, 1, which is analogous to s2
1 in the

analytical model. When an individual is in environment 0,

the epigenetic state is affected by the value at the locus m0

with probability 1 2 1, otherwise it is affected by the value of

the locus m1 (and vice versa for individuals in environment

1). Further details on the models and their parameter settings

can be found in the electronic supplementary material.

(c) Main results
The general patterns are similar for the three different timings

of epigenetic resetting relative to environmental induction,

although the baseline level of incomplete resetting evolves to a

higher level when resetting occurs after, rather than before,

phenotype determination (electronic supplementary material,

figures S2 and S3). In what follows, we therefore refer only to

results for the version that is analogous to the analytical model

(i.e. ytþ1 ¼ hyt þ mt þ dt) and provide results for the other scen-

arios in the electronic supplementary material. In the electronic

supplementary material, we also give examples of simulation

runs to demonstrate how h, m0 and m1 evolve over time

(electronic supplementary material, figures S4 and S5).

In the spatially heterogeneous environment with equal

patch-type frequencies, we find that incomplete resetting

evolves when both the rate of dispersal and the specificity of

environmental maternal cues are low (figure 3). Similar results

occur when patch types occur at different frequencies. How-

ever, when one environment is uncommon and the

specificity of environmental (maternal) cues is low, the

system evolves to produce a single phenotype (i.e. both m0

and m1 are positive) and as a consequence there is no selection

on epigenetic resetting (figure 4).

In the cyclical environment, incomplete resetting is

favoured when the environment remains stable for long

periods and the specificity of the environmental maternal cue

is low (figure 5). However, we also find that incomplete reset-

ting is favoured at a period of only four generations (figure 5).

We explain this special case in the electronic supplementary

material (figure S6).
4. Discussion
There is increasing empirical evidence for transgenerational

epigenetic inheritance in microbes, plants and animals. This

has generated substantial controversy, not the least because

it is unclear whether such inheritance could ever be adaptive

[41]. Our models show that incomplete resetting between

generations can evolve when the correlation of environmental

states across generations is high and the accuracy of environ-

mental cues is low. Here, we explain the rationale for these

results and how they compare to previous models, and

discuss how applicable the theory is to natural systems.

The analytical model extends results from a recent model of

optimal introduction and transmission of variants in variable

environments [38]. Our results show that incomplete resetting

of epigenetic states in germ cells can be favoured when the

environmental autocorrelation is high and (maternal) environ-

mental cues are unreliable. These results were corroborated

by individual-based simulations where the phenotypes were dis-

crete and developed according to a threshold model; incomplete

resetting evolved in environments that changed infrequently

relative to generation time and when environmental (maternal)

effects showed low environmental specificity.

Our results can be interpreted by considering how

passive transmission of epigenetic states across generations

contributes to fitness. During periods of environmental

stability, incomplete resetting protects against mismatched

phenotypes that would otherwise result from responses to

imperfect environmental or maternal cues. But incomplete

resetting also has negative fitness consequences. This can be

illustrated by comparing the fitness consequences of different

resetting strategies following environmental change. Whereas

complete resetting will tend to result in a suboptimal pheno-

type only in the first generation following environmental

change (because of a mismatched maternal effect), incomplete

resetting can cause the wrong phenotype to develop in two or

more consecutive generations (see also [36]). Thus, when

environmental autocorrelation is high and cues are inaccurate,

the fitness benefits of avoiding mismatched phenotypes

(through incomplete resetting of epigenetic marks) outweigh

http://rspb.royalsocietypublishing.org/
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the fitness benefits of rapidly adjusting the phenotype when

the environment changes. The opposite is true when environ-

mental autocorrelation is low and environmental or maternal

cues reliably predict the environment of the next generation.

In other words, the selective advantage of incomplete resetting

depends on the statistical structure of the environment that dic-

tates to what extent epigenetic inheritance carries information

[24,38,39]. Furthermore, the same reasoning also explains

why incomplete resetting is more likely to evolve when the

strength of selection against mismatched phenotypes is weak

relative to the rate of environmental change.

A combination of incomplete resetting and maternal induc-

tion should be manifested as environmental effects on

epigenotype and phenotype that persists over several gener-

ations, the magnitude of which may depend on the maternal

or offspring environment, or both. Such effects are increasingly

observed in animals and, in particular, plants (reviews in

[4,5,17,19,42]), where studies of experimental lines suggest

that induced patterns of DNA methylation are readily inherited

[11]. Similarly, in mammals, DNA sequences can resist
reprogramming [43,44], and the extent of demethylation is regu-

lated by the methylation machinery [45,46]. Thus, although we

often expect transgenerational epigenetic inheritance to be

maladaptive (or fitness neutral), the extent of resetting could

evolve in response to selection. Prime candidates for adaptive

incomplete resetting are organisms that live in environments

where the rate of change is slow relative to generation time

and reliance on environmental cues is constrained or costly.

This may apply to some plant species during ecological succes-

sion, in species that undergo population cycles due to

colonization and extinction dynamics, or in highly sedentary

animals living in seasonal environments. The same logic may

also explain instances of transgenerational stability of environ-

mentally induced phenotypes in more mobile animals, such as

tolerance of Daphnia to seasonal algal blooms [47]. Notably,

many studies designed to test for local adaptation, phenotypic

plasticity or even maternal effects will fail to detect incomplete

resetting as those experiments typically do not investigate

multi-generational responses. The prevalence of incomplete

resetting in putative selective regimes is therefore impossible

http://rspb.royalsocietypublishing.org/


rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20150682

7

 on July 6, 2015http://rspb.royalsocietypublishing.org/Downloaded from 
to assess with current data. We also suggest that incomplete

resetting may be a transient evolutionary stage that connects

environmental induction of adaptive variation and its genetic

accommodation [48,49]. Under this scenario, incomplete reset-

ting may initially be favoured by selection but would

eventually be replaced by within-generation plasticity after,

for example, an innovation in how cues are assessed.

That incomplete resetting of epigenetic states is only

expected to be favoured when the environment fluctuates

slowly relatively to generation time may seem surprising

considering that transgenerational epigenetic inheritance

is often argued to be adaptive when fluctuations occur on

the time scale of a small number of generations (e.g. [20,21,25,

32,33]). The difference arises because previous models have typi-

cally contrasted more or less stable passing of epigenetic variants

(i.e. epialleles) between generations with within-generation

plasticity or genetic inheritance [32,33,36,37]. For example, in

the model of Jablonka et al. [32], the environment changed

within generations, between the induction and selection stage,

so that highly responsive phenotypes did worse in variable

environments. Selection against plasticity directly results in

transgenerational stability of phenotypes in this model since

the adult always passes on its (sometimes acquired) phenotype

to the offspring unchanged. Other models that are sometimes

couched in terms of epigenetic inheritance have considered

optimal phenotypic switching or bet-hedging (e.g. [50]). Our

approach is different because we explicitly modelled the

joint evolution of plasticity and inheritance, which can result

in partial inheritance of acquired states. As with maternal

effects [39,40,51–53], the adaptive value of this environment-

dependent heredity depends on the statistical relationship

between environmental fluctuations and generation time [38].

To gain further insights into these phenomena, it may be

important to consider more mechanistic details. For example,

the epigenetic response to an environmental stimulus may

depend on the initial epigenetic state, which perhaps could

make incomplete resetting favoured under a broader range of

environments [54]. Our model is also very simple in that it
deals with asexual haploid organisms. It is likely that sexual

reproduction will be important as both parents can contribute

to the epigenetic state of the offspring. Because sexes may

differ in their tendency to disperse, this could select for

parent-of-origin-specific parental effects and incomplete reset-

ting [39,53]. Finally, as in all models, we constrained the

possible solutions to the problem posed by the environment.

For example, dispersal did not evolve in the spatial simulation

model, yet conditions favouring incomplete resetting may

instead select for increased dispersal, which in turn would

relax selection on epigenetic inheritance.

In summary, we show that incomplete epigenetic resetting

can adaptively coevolve with plasticity or maternal effects in

heterogeneous environments. This may contribute to empirical

observations of cumulative or persistent trans-generational

epigenetic inheritance spanning several generations in plants

and animals. However, our results suggest that adaptive

incomplete resetting should be restricted to situations where

environmental change is infrequent relative to generation

time and direct environmental cues are unreliable. How often

these conditions are met in nature, and whether or not incom-

plete resetting has evolved in response to these conditions,

remain open questions.
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