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Infections with rapidly evolving pathogens are often treated using
combinations of drugs with different mechanisms of action. One
of the major goal of combination therapy is to reduce the risk of
drug resistance emerging during a patient’s treatment. Although
this strategy generally has significant benefits over monotherapy,
it may also select for multidrug-resistant strains, particularly dur-
ing long-term treatment for chronic infections. Infections with
these strains present an important clinical and public health problem.
Complicating this issue, for many antimicrobial treatment regimes,
individual drugs have imperfect penetration throughout the body,
so there may be regions where only one drug reaches an effective
concentration. Here we propose that mismatched drug coverage
can greatly speed up the evolution of multidrug resistance by
allowing mutations to accumulate in a stepwise fashion. We de-
velop a mathematical model of within-host pathogen evolution
under spatially heterogeneous drug coverage and demonstrate
that even very small single-drug compartments lead to dramati-
cally higher resistance risk. We find that it is often better to use
drug combinations with matched penetration profiles, although
there may be a trade-off between preventing eventual treat-
ment failure due to resistance in this way and temporarily reducing
pathogen levels systemically. Our results show that drugs with
the most extensive distribution are likely to be the most vulner-
able to resistance. We conclude that optimal combination treat-
ments should be designed to prevent this spatial effective mono-
therapy. These results are widely applicable to diverse microbial
infections including viruses, bacteria, and parasites.
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Current standard-of-care treatment for many bacterial and
viral infections involves combinations of two or more drugs

with unique mechanisms of action. There are two main situations
in which combination therapy significantly outperforms mono-
therapy (treatment with a single drug). First, in clinical scenarios
where precise pathogen identification is not possible before
treatment begins (“empirical therapy”), or when infections are
suspected to be polymicrobial, treating with multiple drugs in-
creases the chances of targeting the virulent organism. Second,
even when infections are caused by a single, precisely identified
microbe, combination therapy reduces the risk of developing
drug resistance. This reduced risk is believed to follow from the
fact that multiple mutations are generally needed to enable
pathogen growth when multiple drugs are present. In addition,
the use of multiple drugs may reduce the residual population size
and thus further reduce the rate of evolution of resistance.
Preventing the evolution of resistance is particularly relevant to
infections caused by rapidly evolving pathogens and to persistent
infections that can be controlled but not cured, for which there

may be a high risk of drug resistance evolving during the course
of a single patient’s treatment. Despite widespread use of com-
bination therapy, drug resistance remains a serious concern for
many infections in this category, such as the human immuno-
deficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus
(HCV), Mycobacterium tuberculosis (TB), and other chronic
bacterial infections (1–5), as well as for certain cancers (6, 7).
Understanding the factors that facilitate the evolution of multi-
drug resistance is therefore a research priority.
Combination therapy can be compromised by treatment regimes

that allow resistance mutations to different drugs to be acquired
progressively (i.e., in stepwise fashion) rather than concurrently.
This can occur when only one drug of the combination is active
during certain time periods. For example, starting patients on a
single drug before adding a second drug promotes the evolution of
multidrug resistance (8–11). A similar effect is seen for studies
that rotate antibiotics (12–14). Even if drugs are given simulta-
neously but have different in vivo half-lives (15–17) or postanti-
biotic effects (18), periods of “effective monotherapy” with the
longer-lived drug can occur, which may favor resistance evolution.
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The evolution of drug resistance is a major health threat. In
chronic infections with rapidly mutating pathogens—including
HIV, tuberculosis, and hepatitis B and C viruses—multidrug re-
sistance can cause even aggressive combination drug treatment
to fail. Oftentimes, individual drugs within a combination do
not penetrate equally to all infected regions of the body. Here
we present a mathematical model suggesting that this imper-
fect penetration can dramatically increase the chance of treat-
ment failure by creating regions where only one drug from a
combination reaches a therapeutic concentration. The result-
ing single-drug compartments allow the pathogen to evolve
resistance to each drug sequentially, rapidly causing multidrug
resistance. More broadly, our model provides a quantitative
framework for reasoning about trade-offs between aggres-
sive and moderate drug therapies.
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HIV and TB are pathogens for which evolution of drug re-
sistance is well studied. Surprisingly, it has been found that
stepwise evolution of drug resistance is common in treated HIV-
(19–21) and TB-infected individuals (18). It is unclear whether
periods of effective monotherapy can explain this observation.
Whereas many recent studies have focused on the potential

impact of different half-lives between drugs, much less is known
about how the spatial distribution of drugs influences the evo-
lution of multidrug resistance during combination therapy. Many
treatments may involve mismatched drug penetrability—that is,
there may be regions of the body where only a subset of drugs
within a combination reaches a therapeutic level (22, 23). For
example, many anti-HIV drugs have been observed at subclinical
concentrations in the central nervous system, the genital tract,
and some lymph tissue (24–26). Low concentrations in these
body compartments, even when plasma concentrations are high,
may allow viral replication and selection of resistance mutations
(22, 27, 28), which may eventually migrate to the blood and lead
to treatment failure (29). In another example, poor antibiotic
penetration within biofilms (30) or certain body tissues (31) during
treatment for Staphylococcus aureus infections is again associ-
ated with resistance evolution. Some medical practitioners rec-
ommend that this problem be addressed by pairing drugs with
high efficacy but low penetration with other drugs of higher pen-
etration, so that total drug coverage in the body increases (31).
However, this is likely a risky strategy. We hypothesize that com-
bination therapy with drugs that have different penetration pro-
files will generally be more vulnerable to resistance, as it promotes
situations of effective monotherapy that may allow a migrating path-
ogen lineage to acquire resistance mutations in a stepwise manner.
Previous work on the effect of drug penetration on drug re-

sistance has mainly focused on monotherapy. A mathematical
model of viral infections showed that the window of drug con-
centrations where resistance mutations can arise and fix is greatly
increased if there is a “drug-protected compartment” or “drug
sanctuary”—a place where the drug level is not high enough to
prevent virus replication (32). More recent theoretical work has
explored the role of concentration gradients in the evolution of
antibiotic resistance. This work demonstrated that when multi-
ple mutations are needed for resistance to a single drug, either a
continuous concentration gradient (33) or discrete microenvi-
ronments with differing concentrations (34) can speed up the
rate of evolution. Experiments in microfluidic chambers where
mobile bacteria grow in the presence of a spatial drug concen-
tration gradient have confirmed that adaptation is accelerated
(35). These results are surprisingly similar to studies that create
temporal gradients in drug concentrations (36).
A few detailed simulation studies have examined resistance

evolution during combination antibiotic therapy and included
sources of heterogeneity in drug efficacy (37–39). These models
used experimentally determined pharmacodynamic parameters
and included subpopulations of slow-growing persister bacteria
that may be less sensitive to one or all antibiotics in a combi-
nation. Although these studies did not specifically focus on
quantifying the role of effective monotherapy due to mismatched
drug distributions, they strongly suggest that it may play a role in
multidrug resistance.
In this paper, we examine the general role that drug pene-

tration plays in evolution of resistance during combination
therapy—thereby addressing a broad range of effective drug treat-
ments. Specifically, we use a mathematical modeling strategy to
show how the existence of anatomical compartments where
only single drugs are present can drastically change the rate at
which multidrug resistance emerges and leads to systemic in-
fection despite treatment. Among several pharmacologic and
genetic determinants of resistance, we find that the size of
single-drug compartments is key. A simple mathematical expres-
sion describes the critical size of single-drug compartments above

which drug resistance emerges at an elevated rate, due to step-
wise accumulation of mutations. In addition, we discover that
combination therapy strategies face a general trade-off between
suppressing microbial growth throughout the entire body and
preventing eventual emergence of multidrug resistance. This trade-
off implies, perhaps counterintuitively, that it may be rational to
allow low-level microbial growth restricted to a small compartment
where no drugs penetrate, to avoid regions of mismatched drug
penetration—and increased risk of resistance emerging in the
entire body. We discuss implications of this work for designing
optimal drug combinations to prevent spatial effective mono-
therapy. Finally, we use our theory to explain why stepwise evo-
lution of resistance may occur during effective combination
therapy, as is sometimes seen clinically.

Model
Our goal is to understand the role of drug penetration in the evo-
lution of multidrug resistance. We consider an individual patient’s
body to be divided into discrete and interconnected compartments
where each drug either effectively suppresses pathogen growth or
is completely absent (Fig. 1). We model microbial dynamics in
this environment, including growth, mutation, competition between
strains, and migration between compartments. For simplicity, we
focus on the case of two drugs only, although extensions to com-
binations of three or more drugs are straightforward.
To describe population dynamics of the pathogen in this

scenario, we use a viral dynamics model (40) (SI Appendix) that
tracks infected and uninfected cells. We analyze the model,
using a fully stochastic simulation (SI Appendix), and derive
approximate analytic formulas to describe the dominant pro-
cesses. Other ways of modeling pathogen growth with limited
resources, such as the logistic model, could be used instead and
we expect this would have little influence on the results. In this
model, pathogen fitness can be measured in terms of the basic
reproductive ratio R0, the number of new infections generated
by a single infected cell before it dies, when target cells are in
excess. A strain can lead to a sustainable infection in a com-
partment only if R0 > 1 (i.e., growth is positive). When this
occurs, the pathogen population can reach an equilibrium level
that we refer to as the carrying capacity (K).

Fig. 1. Compartment model for combination therapy with two drugs. The
box represents a patient’s body and the red and blue shaded areas indicate the
presence of drug 1 and drug 2, respectively. Mismatched drug penetration
creates regions in the body where only one drug from the combination is
present. We refer to these regions as single-drug compartments. Colored cir-
cles represent the pathogen genotypes: wild type (light gray), mutant resistant
to drug 1 (blue), mutant resistant to drug 2 (red), and double-drug-resistant
mutant (purple). In the sanctuary all of the pathogen genotypes can grow
because none of the drugs is present. In the single-drug compartments only
pathogens carrying a resistance mutation against the active drug can grow;
that is, each drug alone suppresses pathogen growth. Finally, in the double-
drug compartment only the double-drug-resistant mutant can grow. All of the
compartments are connected by migration as indicated by the black arrows.
Treatment failure occurs when the double-drug compartment, which always
composes the majority of the body, is colonized by the double mutant. Note
that we do not always require that both single-drug compartments exist, and
the compartment sizes may not follow this particular geometric relationship.
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We consider at most four compartments within a single patient
(Fig. 1): one compartment where no drugs are present (the
sanctuary), two compartments where only one of the drugs is pre-
sent (single-drug compartments 1 and 2), and one compartment
where both drugs are present (the double-drug compartment,
which we always take to be by far the largest compartment). The
pathogen population within each compartment is assumed to be
well mixed and follows the viral dynamics model. The size of each
compartment j is given by the number of target cells Nj that it
contains when infection is absent. The carrying capacity Kij of
pathogen strain i infecting compartment j increases monotonically
with pathogen fitness ðRij

0Þ and is always less than the compartment
size (Kij <Nj for all i), assuming that the death rate of infected cells
exceeds that of uninfected cells. In the absence of mutation or
migration, there is competitive exclusion between strains within a
compartment, and the strain with the highest fitness goes to fix-
ation. With migration or mutation, multiple strains may coexist
within a compartment, although the locally suboptimal strains
generally occur at much lower frequencies.
The four compartments are connected by migration of path-

ogens (but not drugs), and every strain in the body migrates from
compartment j to compartment k at a ratemjk per time. We use a
simple and biologically realistic migration scheme in which each
pathogen migrates out of its home compartment at the same rate
m. Migrants from a given compartment are then distributed into
all four compartments (including the one they came from) pro-
portionally to the compartment sizes, so that larger compart-
ments get more migrants.
A single mutation is needed for resistance to each drug. Mu-

tations conferring resistance to drug i occur at a rate μi (and can
revert at the same rate). Resistance to two drugs requires that
both mutations occur, and we do not allow recombination or any
other form of lateral gene transfer to break linkage between the
two mutations. We design our fitness landscape so that four
assumptions are met: (i) Each drug alone suppresses pathogen
growth, (ii) a wild-type pathogen in the sanctuary has the highest
possible fitness, (iii) a doubly resistant pathogen is always viable,
and (iv) in the single-drug compartments, the strain with re-
sistance only to the drug present is the fittest. Formally, if a
strain is not resistant to a drug i present in the compartment
where it resides, its fitness is reduced by a factor of 1− ei, where
ei ∈ ½0,1� is the drug efficacy. Resistance mutations come with a
fitness cost si ∈ ½0,1�. The fitness of resistant strains is completely
unaffected by the presence of the drug. The fitness values for
each genotype in each compartment, relative to that of a wild-
type strain in the sanctuary ðRWTÞ, are shown in Table 1. To
satisfy condition i, we constrain RWTð1− eiÞ< 1, and to meet
condition iii, we require RWTð1− s1Þð1− s2Þ> 1. At the start of
treatment, we suppose the wild-type pathogen to be present in all
compartments; we first focus on the case without preexisting
resistance mutations and later consider how preexisting resistance
alters results.
We apply this model to a physiologic scenario where the

double-drug compartment occupies the vast majority of the
body and where isolated infections within the small sanctuary

or single-drug sites are not life threatening on their own.
Therefore, treatment failure is said to occur when the multidrug-
resistant mutant colonizes the double-drug compartment. We
define colonization as a pathogen load high enough such that
the probability of chance extinction is negligible. We investigate
how the presence and size of single-drug compartments—created
by combinations of drugs with mismatched penetration profiles—
determine two clinical outcomes: the rate at which treatment
failure occurs and the evolutionary path by which the multidrug-
resistant mutant emerges. Under the direct evolutionary path,
multiple-resistance mutations are acquired near simultaneously
[this is sometimes referred to as “stochastic tunneling” (41, 42)];
under stepwise evolution, a single-drug compartment is colo-
nized with a single-resistant strain before the emergence of mul-
tidrug resistance.

Results
Mismatched Drug Penetration Can Speed Up Emergence of Resistance.
Using parameter values appropriate for HIV treatment (SI Ap-
pendix), we simulate pathogen evolution according to the model
described above. For simplicity, we first consider the presence
of only one single-drug compartment (containing drug 1). The
probability of treatment failure via double-drug resistance after
1 year (Fig. 2A) or 10 years (Fig. 2B) increases dramatically with
the size of the single-drug compartment, even when this region is
two to three orders of magnitude smaller than the area covered by
both drugs. This demonstrates that imperfect drug penetration can
be highly detrimental to treatment outcomes.
Mismatched drug penetration hastens the emergence of mul-

tidrug resistance by allowing for stepwise evolution (Fig. 2 C and
D). Specifically, single-resistant mutants can evade competition
with wild-type strains by migrating to the single-drug compart-
ment, which serves as a platform from which resistance to the
second drug may evolve (Fig. 2D). When drugs have identical
penetration, there are only two compartments—the sanctuary
and the double-drug compartment. In typical simulations (Fig.
2C), single-resistant mutants arising in the sanctuary are driven
recurrently to extinction by the fitter wild type. As a result, the
only way that double-drug resistance can emerge is by appear-
ance of both mutations nearly simultaneously, enabling success-
ful migration to the double-drug compartment (direct evolution).
This slow process increases time to treatment failure.
Consistent with the above explanation, the prevalence of fail-

ure by direct evolution depends weakly on single-drug com-
partment size, only decreasing slightly with compartment size
as the competing stepwise path occurs first (Fig. 2 A and B).
Failure by stepwise evolution, however, increases substantially
with the size of the single-drug compartment, and it is the
dominant path if the single-drug compartment exceeds a crit-
ical size, investigated below.

Stepwise vs. Direct Evolution. Using a simplified model of coloni-
zation of each compartment, we can approximate the critical
single-drug compartment size above which stepwise evolution
becomes the dominant process. Specifically, we approximate

Table 1. The fitness of each pathogen strain in each compartment relative to the fitness of the
wild-type strain in the absence of the drug (RWT)

Sanctuary SDC 1 SDC 2 DDC

Wild type 1 1− e1 1− e2 ð1− e1Þð1− e2Þ
Single mutant 1 1− s1 1− s1 ð1− s1Þð1− e2Þ ð1− s1Þð1− e2Þ
Single mutant 2 1− s2 ð1− s2Þð1− e1Þ 1− s2 ð1− s2Þð1− e1Þ
Double mutant ð1− s1Þð1− s2Þ ð1− s1Þð1− s2Þ ð1− s1Þð1− s2Þ ð1− s1Þð1− s2Þ

The efficacy of drug i is ei and the fitness cost of resistance to drug i is si. DDC, double-drug compartment; SDC,
single-drug compartment.
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the colonization process by transitions between discrete states
of the population, where each state is described by the presence
or absence of each strain in each compartment. For brevity, we
assume that the mutation rate and fitness cost are the same for
both mutational steps and that there is only one single-drug
compartment. In state 0, only the sanctuary is colonized (by the
wild-type strain); in state 1, the single-drug compartment is also
colonized (by the single-resistant mutant); and state 2 is the
end state where the double-drug compartment is colonized (by
the double-resistant strain). Rates of treatment failure can be
computed exactly in this simplified model (SI Appendix, sections
4–6), which provides an excellent approximation to the full
stochastic simulation (Fig. 2 A and B).
Using this model, we can obtain simple approximate expres-

sions for the size of the single-drug compartment (SDC) where
the stepwise path starts to overtake the direct path (detailed in SI
Appendix, section 7). The SDC becomes colonized (transition
from state 0 to state 1) by one of two events. Either a mutation
occurs within the sanctuary, and then that strain migrates to
the SDC, or a wild-type strain migrates from the sanctuary to the
SDC, where it manages to replicate and mutate despite the
presence of the drug. In both cases the mutant must escape ex-
tinction to establish an infection in the SDC. In the limit where
mutation cost is small ðs � 1Þ but drug efficacy is high ðe≈ 1Þ,
mutation typically precedes migration, and the rate of invasion of
the single-drug compartment is approximately

r01 ≈  
μ

s
  KWT

SAN

�
m

NSDC

NTOT

��
1−

1
RWTð1− sÞ

�
.

Here ðμ=sÞKWT
SAN is the number of single mutants in the sanctuary

(“SAN,” at mutation–selection equilibrium), mðNSDC=  NTOTÞ
is the migration rate to the single-drug compartment, and
ð1− 1=RWTð1− sÞÞ is the establishment probability of a resistant
mutant in the single-drug compartment (see SI Appendix for full
derivation with respect to the viral dynamics model). If invasion
is successful, we assume that the population in the newly invaded
compartment reaches its carrying capacity ðK1

SDCÞ instanta-
neously. Doing so relies on a separation of timescales between
the slow processes of mutation and migration and the faster
process of growth to equilibrium.
Similarly, once the single-drug compartment is colonized, the

double-drug compartment (DDC) can be invaded. Again, the
mutation–migration path is most likely, with rate approximately

r12 ≈  
μ

s
  K1

SDC

�
m
NDDC

NTOT

� 
1−

1

RWTð1− sÞ2
!
.

The double-drug compartment can also be invaded directly from
the sanctuary. There are three paths by which this can happen,
depending on whether none, one, or both of the necessary
mutational steps occur before migration. By the same logic as

A B 

C D 

Fig. 2. Resistance evolution in the presence of a single-drug compartment. Even a small single-drug compartment can considerably speed up the evolution of
double-drug resistance. (A and B) The shaded area gives the fraction of simulated patients that failed treatment after 1 year or 10 years as a function of the
size of the single-drug compartment containing drug 1 (SDC1) relative to the size of the double-drug compartment (DDC). We further indicate whether
treatment failure occurred via direct (gray circles) or stepwise (pink circles) evolution. Solid lines are analytic calculations (SI Appendix, sections 5 and 6). The
vertical dotted lines are further simplified, closed-form analytical expressions for the point where the stepwise path to resistance becomes more impor-
tant than the direct path (SI Appendix, sections 4.2 and 7). (C and D) Evolution of drug resistance over time for a simulated patient in the absence (C) or
presence (D) of SDC1. When there are no single-drug compartments, mutants resistant to drug 1 go to extinction recurrently by competition with the
wild type in the sanctuary, whereas in the presence of SDC1, mutants resistant to drug 1 can escape competition and establish a continuous population (blue
line) from which a doubly resistant strain can evolve (purple). Parameters: RWT = 4, e1 = 0.99, e2 = 0.99,dy = 1 d−1,dx = 0.1 d−1,m= 0.1 d−1, s1 = 0.05, s2 = 0.05,
μ1 = 10−5, μ2 = 10−5,NSAN = 105 cells,NSDC2 = 0 cells,NDDC = 107 cells. NSDC1 changes along the x axis for A and B and for each value of NSDC1 treatment has failed in
at least 2,000 simulated patients. NSDC1 = 0 for C and NSDC1 = 5× 104 cells for D.
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above, the mutation–mutation–migration path is most likely, and
the rate is approximately

r02 ≈  
μ2

s2
  KWT

SAN

�
m
NDDC

NTOT

� 
1−

1

RWTð1− sÞ2
!
.

In the scenario under consideration, the mutation rate is much
smaller than the cost of mutations ðμ=s � 1Þ so that μ2=s2 � μ=s.
We also assume that both drugs penetrate in a large part of the
body so that the double-drug compartment is always much
larger than the single-drug compartment ðNSDC � NDDCÞ. It
is therefore likely that r01 � r12 and r02 � r12. Using these ex-
pressions, we can determine the overall rate at which the DDC
becomes colonized via the SDC (stepwise evolution) and com-
pare it to the rate of direct evolution.
First, we consider treatment outcomes when a short enough

time (t) has passed so that drug resistance is rare and all steps are
rate limited (r01t � 1, r12t � 1, r02t � 1). In this regime, the
minimum size of the SDC at which stepwise evolution outpaces
the direct path (lines cross in Fig. 2 A and B) increases with the
pathogen virulence ð≈K1

i =NiÞ, but decreases with the migration
rate (m) and (weakly) with the fitness of the single mutant
ðRWTð1− sÞÞ. It also decreases with the time of observation (t)
because the stepwise path requires two steps, so that for very
small t, the SDC needs to be larger for it to be possible that both
steps are completed. This approximation (SI Appendix, section 7,
Approximation 1) describes the cross point after 1 year of treat-
ment well (Fig. 2A).
Alternatively, if the treatment time is long enough so that most

individuals who developed single-drug resistance progressed to
treatment failure ðr12t> 1Þ, but the other (slower) steps remain
rate limiting, then a simpler and more intuitive result emerges:
The stepwise path is more important than the direct path if

NSDC

NDDC
>
μ

s
.

The single-drug compartment therefore plays an important
role if its size, relative to that of the double-drug compartment, is
at least equal to the mutation-to-cost ratio. Intuitively, if muta-
tions are rare and costly, then double mutants occur infrequently
and the stepwise path to multidrug resistance is relatively more
important. Even if mutations are rather common (say, μ= 10−5)
and not very costly ðs= 10−3Þ, the stepwise path is still dominant
if the single-drug compartment is at least 1/100th the size of the
double-drug compartment. For the parameters used in the fig-
ures, this approximation describes the cross point after 10 years
of treatment well (Fig. 2B).

Trade-Off Between Halting Pathogen Growth and Preventing Resistance.
The choice of antimicrobial therapy generally presents a trade-
off between maximizing clinical efficacy and minimizing the
chance that drug resistance emerges (43). The spatial setting in-
troduces new dimensions to this trade-off. In this setting, min-
imizing the size of single-drug compartments can impede the
stepwise evolution of resistance. Pursuing this goal, however, in-
volves choosing drugs that penetrate the same anatomical re-
gions, potentially reducing the portion of the body that receives
any drug at all. The physician therefore may sometimes be
faced with a trade-off: to halt wild-type growth immediately
(smaller sanctuary) or to prevent stepwise evolution of re-
sistance (smaller single-drug compartments).
To investigate this trade-off, we vary single-drug compartment

size relative to the sanctuary, keeping double-drug compartment
and total system size constant (Fig. 3). We do this analysis
imagining that one drug of the combination is fixed, and another
can be chosen that has either equal or greater penetration.

Consistent with the above findings, the rate of treatment failure
by double-drug resistance increases dramatically as single-drug
compartment size increases from zero. At the same time, however,
the sanctuary shrinks from its maximum size, reducing total
pathogen load in the body before failure.
The trend in treatment failure reverses, however, as the sanc-

tuary is further reduced (right half of Fig. 3A). Even when step-
wise evolution is still the dominant mode of treatment failure, a
small sanctuary limits the rate at which single mutations are
generated and therefore decreases the overall rate of emergence
of multidrug resistance. In the complete absence of a sanctuary,
treatment failure can occur only if preexisting resistance is se-
lected or if resistance is generated very quickly after treatment
starts. Because these events are not guaranteed, cure becomes a
possible outcome (SI Appendix, Fig. S1) and the rate of resistance
evolution is dramatically reduced. The rate of treatment failure
is greatest when the sanctuary and single-drug compartment are
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Fig. 3. Trade-off between total drug coverage and the presence of single-
drug compartments. (A) The adaptation rate (purple circles, left y axis) and
time-averaged infection size (orange circles, right y axis) are plotted as a
function of the size of the single-drug compartment with drug 1 ðNSDC1Þ,
assuming that the sum of the sizes of the sanctuary ðNSANÞ and SDC1 is
constant. Diagrams below the x axis illustrate the changes in compart-
ment sizes, following the style of Fig. 1. The adaptation rate is defined as
the inverse of the mean time to treatment failure and is plotted relative to
the rate when NSDC1 = 0. We show adaptation rate only from acquired ge-
netic variation (solid circles) and from both acquired and standing genetic
variation (i.e., preexisting resistance, open circles); the difference is shown
by the gray area and the vertical lines. The infection size is calculated as
the mean of the time-averaged number of infected cells in all compartments
before treatment failure occurs. Increasing the size of the single-drug
compartment provides better control of the infection before treatment
fails, but strongly favors resistance evolution if the reduction of the sanctuary
is not large enough. (B) Ratio of the rate of adaptation from standing and
acquired genetic variation ðRSGV+ AGVÞ to the rate of adaptation only from ac-
quired genetic variation ðRAGVÞ. The relative contribution of standing genetic
variation to treatment failure increases with the size of the SDC. Parameters:
RWT = 4, e1 = 0.99, e2 = 0.99,dy = 1 d−1,dx = 0.1 d−1,m= 0.1 d−1, s1 = 0.05, s2 =
0.05, μ1 = 10−5, μ2 = 10−5,NSAN = 105 −NSDC1,NSDC2 = 0 cells,NDDC = 107 cells.
Each point is an average over at least 30,000 simulated patients.
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similar in size, highlighting the fact that stepwise evolution is driven
by interaction between a sanctuary and single-drug compartments.
These findings suggest that eliminating all sanctuary sites

should be a primary goal (moving toward far right in Fig. 3A),
because this reduces pathogen load and the risk that re-
sistance evolves. If this is not feasible (for example, if the path-
ogen has a latent phase not targeted by treatment), then preventing
any zones of single-drug coverage should take precedence to keep
the rate of evolution of drug resistance as low as possible (moving
toward far left in Fig. 3A).

Accounting for Preexisting Mutations. To focus clearly on the pro-
cesses by which resistance is acquired during combination ther-
apy, we have so far ignored the contribution of preexisting mutants
(known in the population genetics literature as “standing genetic
variation”). To instead include this factor, we simulate the model
for a period before the introduction of treatment, allowing both
single- and double-resistant mutants to occur along with the wild-
type strain in each compartment. Previous work has focused ex-
tensively on comparing the relative roles of preexisting and acquired
resistance in viral dynamics models (21, 44–46), and here we simply
summarize the trends in our model.
The addition of preexisting resistance acts to increase the overall

rate of treatment failure, and this increase is more prominent for
certain parameter values and for smaller treatment times (com-
pare SI Appendix, Fig. S2A with Fig. 2A). However, the inclusion
of preexisting resistance does not affect any of the general trends,
such as the dominant path to resistance (SI Appendix, Fig. S2)
or the trade-off between the size of the sanctuary and the single-
drug compartment (Fig. 3). Importantly, the role of preexisting
resistance—defined as the percentage of failures attributable to
standing genetic variation—increases dramatically with single-
drug compartment size (Fig. 3B). Therefore, the presence of
compartments where only single drugs penetrate can increase the
rate of treatment failure both by making it quicker to acquire
multiple-resistance mutations and by selecting for preexisting
single-drug-resistant mutants.
Preexisting mutations are particularly relevant for curable in-

fections, as opposed to chronic ones. In such infections, either
a sanctuary zone does not exist or it is small enough to be erad-
icated by immune responses. As treatment duration is limited,
treatment failure can occur only if there are preexisting re-
sistance mutations or if the pathogen acquires resistance shortly

after treatment starts. In this limit, the dynamics are a classic
“race to rescue” described by Orr and Unckless (47), which re-
sults in either cure or treatment failure. We find that zones of
mismatched penetration reduce the probability of curing the
infection (SI Appendix, Fig. S1) by selecting for single-drug-
resistant mutations that would otherwise become extinct under
combination therapy. In a scenario where sanctuary regions
exist initially but eventually decay (for example, if they are
caused by long-lived persister cells), we expect that mismatched
drug penetration will both decrease the probability of cure and
decrease the time to resistance in those patients in whom cure
is not achieved.

Order of Mutations. Because pharmacological factors determining
penetration of anatomical compartments vary widely among drugs
(23, 25, 30, 48), we generally expect that each drug in a combination
has its own single-drug compartment. In this general case, we can
ask, To which drug does the pathogen become resistant first? More
precisely, if stepwise evolution occurs, is it likely to be through the
path SAN→ SDC1→DDC or SAN→ SDC2→DDC? Examin-
ing the rate of each path as a function of the size of each single-
drug compartment (Fig. 4A) shows that resistance is more likely
to emerge first to the drug with the highest coverage (and there-
fore largest SDC) and that the odds of resistance occurring to one
drug before another are proportional to the ratio of the corre-
sponding SDCs over a large parameter range.
Moreover, the mutation rates and costs associated with re-

sistance to each drug may differ, also influencing the likelihood of
a particular path to resistance. Resistance is more likely to emerge
first for the drug associated with the highest mutation rate (Fig.
4B) and lowest fitness cost (Fig. 4C), with the relative rates again
being approximated by the ratios of the parameters. Drug efficacy
may also vary, although in the regime where each drug individually
suppresses wild-type pathogen growth ðRWTð1− eÞ � 1Þ and the
cost of mutations is not too high ðs< eÞ, drug efficacy barely in-
fluences the order in which resistance mutations are acquired
(SI Appendix, Fig. S3).

Discussion
Antimicrobial drugs fail to reach effective concentrations in many
tissues and body organs, allowing pathogen replication and po-
tential evolution of resistance (26, 28, 31, 48, 49). We studied the
role of imperfect drug penetration in the development of drug

A C B 

Fig. 4. Stepwise resistance evolution in the presence of two single-drug compartments. (A–C) Fraction of simulated patients that failed via the path where
the single-drug compartment with drug 1 is colonized before treatment failure (P(SDC1): SAN→ SDC1→ DDC) relative to the fraction that failed via the path
where the single-drug compartment with drug 2 is colonized before (P(SDC2): SAN→ SDC2→ DDC) as a function of (A) compartment sizes, (B) mutation rates,
and (C) mutation costs. (A) The x axis corresponds to the ratio of the size of the single-drug compartment with drug 1 ðNSDC1Þ to the size of the single-drug
compartment with drug 2 ðNSDC2Þ. (B) The x axis corresponds to the ratio of the mutation rate for resistance to drug 1 ðμ1Þ to the mutation rate for resistance
to drug 2 ðμ2Þ. (C) The x axis corresponds to the ratio of the cost of a resistance mutation to drug 1 ðs1Þ to the cost of a resistance mutation to drug 2 ðs2Þ. Simulation
results (circles) are overlaid with the lines y = x (A and B) or y = 1=x (C). Parameters: RWT = 4, e1 = 0.99, e2 = 0.99,dy = 1 d−1,dx = 0.1 d−1,m= 0.1 d−1, s1 = 0.05,
s2 = 0.05, μ1 = 10−5,μ2 = 10−5,NSAN = 105 cells,NSDC1 = 104 cells,NSDC2 = 104 cells,NDDC = 107 cells. NSDC1 changes along the x axis (A), μ1 changes along the x axis (B),
and s1 changes along the x axis (C). The total number of simulated patients for each point is at least 6,000.
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resistance during combination therapy, using a model of within-
host pathogen evolution. In particular, we focused on the conse-
quences of mismatched drug penetration, which may be common
during combination therapy (22, 23, 25, 31). Our findings are
summarized in Fig. 5.
In this model, mismatched penetration of two drugs into an-

atomical compartments sped up the evolution of multidrug re-
sistance dramatically by creating zones of spatial monotherapy
where only one drug from a combination regime is at therapeutic
concentration. These zones, or “single-drug compartments,” pos-
itively select for single-drug-resistant mutants, thereby favoring the
fast stepwise accumulation of resistance mutations (Figs. 2 A, B,
and D and 5B). Stepwise resistance evolution is hindered when
drugs have identical penetration profiles, because in that case
single-drug-resistant mutants compete with the fitter wild type in
the sanctuary and they therefore suffer recurrent extinction

(Figs. 2C and 5 A and C). Without access to the stepwise path,
resistance mutations must be acquired near simultaneously; the
system thus takes a far slower “direct” path to treatment failure.
Even slight differences in penetration of coadministered drugs
lead to a high risk of multidrug resistance, because the stepwise
path dominates the direct path even for very small single-drug
compartments (Fig. 2 A and B).
The effects of single-drug compartments are most severe for

chronic infections, during which pathogen replication persists to
generate de novo resistance mutations, and treatment creates a
long-term selective advantage for resistant strains. However, we
have also demonstrated that mismatched penetration can speed
up the development of resistance from preexisting mutations
(Fig. 3) and can reduce the probability of cure for infections
without a sanctuary (SI Appendix, Fig. S1), suggesting that these
results may have applications to acute infections as well.
Although mismatched drug penetration generally favors re-

sistance evolution and should be avoided, this may not always be
possible. Immediate clinical efficacy may at times be more im-
portant than the prevention of resistance. It may therefore be
advantageous, in some cases, to select a combination of drugs
with different penetration profiles, if doing so eliminates sanc-
tuary sites in the body. With no sanctuary sites, the total path-
ogen load will be as low as possible during treatment and few
new mutations will be created. This slows the rate of evolution of
drug resistance (Fig. 3) and makes complete eradication of the
infection (cure) possible. If elimination of sanctuaries is not
possible, however, then avoiding single-drug compartments due
to mismatched penetration in a combination regime should be
the main strategy for preventing multidrug resistance. If there
are several single-drug compartments, eliminating one may have
little effect if another remains. If neither single-drug compart-
ments nor sanctuaries can be eliminated, then the optimal so-
lution to reduce resistance is not obvious without some knowledge
of the relevant parameters. Some insight as to where a particular
treatment regime falls along this trade-off curve may be gained
by observing the patterns of resistance acquisition. These include
the overall prevalence of single-resistant strains before multidrug
resistance emerges and the relative order in which different single-
resistant strains appear. Previous work has questioned the ortho-
doxy that “aggressive” antimicrobial chemotherapy is optimal for
preventing resistance (43, 50). If we consider that one aspect of
treatment aggressiveness is the extent of drug penetration, then our
model demonstrates the complexities involved in answering this
question and motivates further work aimed at estimating the size of
drug-protected compartments for relevant combination therapies.
In particular, our model offers an explanation for why the

strategy suggested for some antibiotic treatments of pairing a
broadly penetrating drug (e.g., rifampicin) with a narrowly pen-
etrating one (e.g., vancomycin) to increase total drug coverage
(51) might fail frequently due to the rapid evolution of resistance
against the drug with higher penetration (51–53). It also offers an
alternative explanation of why certain drugs are more vulnerable
to resistance. This vulnerability is usually explained by a low ge-
netic barrier to resistance (i.e., only one mutation needed) or by
their long half-life. Our model suggests that broad penetration
may also make a drug vulnerable to the evolution of resistance, if
the drug is paired with drugs with lower penetration (Fig. 4).
Our model also offers an explanation of stepwise evolution

of resistance in HIV infection, the commonly observed pattern
whereby the virus gains one resistance mutation at a time (19, 54,
55). As treatment regimes are designed so that each drug is ac-
tive against mutants resistant to the others, single-resistant mu-
tants should be driven to extinction both in sanctuary zones
(by competition with fitter wild type) and where all drugs are ac-
tive (by sensitivity to all drugs save one). It has been hypothesized
that either nonadherence to treatment or different drug half-lives
cause “effective temporal monotherapy,” which is to blame for the

A 

B 

C

Fig. 5. Summary of the evolution of resistance with imperfect drug coverage.
(A) When both drugs have high, matched penetration throughout the body,
the evolution of multidrug resistance is slow, because it requires either preex-
isting multidrug resistance or near-simultaneous acquisition of both mutations
along with migration out of a sanctuary site. If one drug (B) or both drugs
(C) have a lower penetration, treatment outcomes may suffer in different ways.
(B) If there are regions where only one drug reaches an effective concentration,
then the evolution of multidrug resistance speeds up, because mutations may
emerge in a stepwise fashion via single-drug compartments. Single mutations
can arise de novo from a wild-type pathogen in the sanctuary or be selected
from preexisting mutations in the single-drug compartment when treatment is
started. (C) If the sanctuary is larger but both drugs reach the same regions of
the body, then resistance still evolves slowly, but the infection size before
treatment failure will be larger. Therefore, if high penetration of all drugs is
impossible, there is a trade-off when choosing which drugs to pair in combi-
nations: halting growth of the wild-type pathogen immediately (B) or pre-
venting the sequential accumulation of resistance mutations (C).
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appearance of single-drug-resistant viruses (16, 17). We propose that
mismatched penetration of drugs in a combination treatment offers
an alternative explanation for this stepwise evolution of resistance,
via “effective spatial monotherapy.” Very small single-drug com-
partments are sufficient to cause this effect, suggesting that these
regions may be very hard to detect and could remain overlooked.
In this study, we focused on the case of treatment with two

drugs, but we expect that our results could generalize to three or
more different drugs. Adding a third drug to a regimen may re-
duce the size of the sanctuaries and/or the size of single-drug
compartments and should therefore reduce the rate at which
multidrug resistance evolves.
Several extensions to our model can be considered in future

studies. First, we assume that drug compartments are discrete and
have a fixed size; however, drug concentrations can be con-
tinuous in space and the pharmacokinetics of individual drugs
can modify the size of the different compartments over time.
Second, we have assumed that treatment fails when the double-
drug compartment is invaded, but depending on the size and
location of drug compartments in the body, treatment may fail
when a single-drug compartment is invaded. Also, we assume
a very specific migration model between the compartments
[known in population genetics as the island model (56, 57)], but
other migration models may be possible. Specifically, not all com-
partments may be connected by migration and the migration rates
may be independent of the size of the target compartment.
Throughout this paper we have considered the fitness effect of

multiple drugs or multiple mutations to be independent (Table 1),
reducing the number of parameters in our model. Actual fitness
landscapes may be more complex than this assumption allows.
First, drugs may interact, so that their combined efficacy de-
viates from the product of their independent effects (58). In-
teractions may be synergistic, leading to greater reductions in
pathogen fitness, or antagonistic, leading to smaller reductions
(38, 39, 59–61). In the case where resistance mutations accu-
mulate in compartments where both drugs are present, previous
modeling and experimental studies have shown that extreme drug
antagonism may hinder evolution of multidrug resistance (62, 63).
In contrast to that case, we have shown here that when mutational
costs are low (small s) and drugs are effective ðR0 < 0.5Þ, treatment
failure is far more likely to be caused by mutations generated in
the absence of a drug that later migrate to a region where the drug
penetrates. Therefore, for the scenarios considered in this study,
we believe that these interactions have minimal effects as long as
each drug is suppressive alone and in combination.
A second possible complication in the fitness landscape is that

resistance mutations may interact, so that their combined fitness
effects are not multiplicative, instead displaying patterns of epis-
tasis. One type of interaction is cross-resistance, by which gaining
resistance to one drug makes a pathogen strain either more or
less susceptible to the other. Because positive cross-resistance
(reduced susceptibility to the other drug) reduces the fitness gap
between the single and double mutant in the presence of drugs,
we would expect it to increase the rate of the stepwise path more
than that of the direct path, hence amplifying the effect of single-
drug compartments. Negative cross-resistance (increased suscepti-
bility) conversely would diminish the stepwise path. A second type
of interaction arises where costs of the resistance mutations are not
independent, affecting their frequency (mutation–selection bal-
ance) in compartments lacking the drug. In many viral infections,
the combined costs are lower than the product of individual costs
(positive epistasis) (64–66). This scenario confers an advantage to
double mutants, accelerating both paths to treatment failure,
whereas negative epistasis would impede both paths.
Throughout this paper, we have assumed that no recombination

(or any other form of lateral gene transfer) occurs between the two
resistance loci. In general, recombination may increase or de-
crease the rate at which multiple-drug resistance develops (67, 68).

However, two features of the clinical setting envisioned here
minimize its importance to treatment failure. First, without epis-
tasis, recombination will not meaningfully affect the individual
gene frequencies (67). Second, in our model, there is no single
compartment where the two resistance mutations are each
beneficial individually, meaning that there is never a situation
where both single mutants are common. As the two single mu-
tants rarely contact one another, recombination cannot speed
up the appearance of the double mutant beyond the action of
mutation alone (68, 69).
Drug compartments are commonly described as specific ana-

tomical locations in the body like organs or tissues. For instance,
not all antimicrobial drugs penetrate to therapeutic concentra-
tions in the central nervous system (22, 27, 28, 70), the genital
tract (22, 25), the lymphoid tissue (22, 26), or other infected
tissues (23, 48, 49). However, the compartments in our model
could be interpreted in many ways. For example, they could
represent different cell types, such as cells in a tumor that are not
reached by anticancer drugs (71, 72), or phenotypically resistant
subpopulations of bacteria that have low permeability to antibi-
otics (73) or replicate slowly (18, 37). The latter scenario was
explored in a computational model of TB treatment (37) that
analyzed the combined effect of noncompliance to treatment and
heterogeneity in drug sensitivity due to differences in cell turn-
over rates. Overall this model is consistent with our results, finding
that when patients were compliant to treatment, larger single-drug
compartments led to more resistance. However, when patients
followed a particular pattern of imperfect compliance to treatment—
by stopping drugs once bacterial loads were below a threshold
value—larger single-drug compartments actually slowed down
resistance evolution. This occurred because the very slow antibiotic-
mediated killing of cells in this compartment, due to the low cell
turnover, meant that patients with larger compartments had to
take drugs for much longer to reduce bacterial loads. Higher
time-averaged drug loads understandably led to lower resistance
risk. This comparison points out the importance of particular
assumptions in determining outcomes and motivates further
studies aimed at understanding the combined effect of spatial
and temporal monotherapy.
Compartments could also exist at a population level, caused by

interindividual differences in pharmacokinetic parameters (74)
or differential targeting of geographic regions with insecticides,
herbicides, or therapeutics. Finally, this model might be relevant
to other evolutionary processes where multiple adaptations are
ultimately needed for survival and to the study of the role of spatial
heterogeneity in adaptation.

Materials and Methods
We use a basic viral dynamics model (40) to simulate the infection within
each compartment and we include stochastic mutation and stochastic
migration among all of the compartments. We perform exact stochastic
simulations, tracking the genotype and location of every infected cell in
the body and explicitly simulating all of the events that might occur to
a cell: replication (representing either division of a bacterial cell or in-
fection of a new cell by a virus), mutation (upon replication), death, and
migration among different compartments. Simulations are performed
using the Gillespie algorithm. Details of the model, analytic approxima-
tions, and simulation methods are provided in SI Appendix.
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