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Abstract—By making minimal assumptions on the kinetics 

of chemical reactions we study the stability of steady states 

in metabolic pathways in relation to the topology of the 

metabolic network. Here we report our results on 

metabolic pathways with irreversible reactions. We show 

that the steady states of linear pathways are always locally 

asymptotically stable. This is not necessarily true for 

branched and cyclic pathways, but stability in such 

networks is assured under mild conditions.  

 

I. INTRODUCTION 

Understanding the dynamics of metabolic networks is a 
challenging task. Most theory has focused on the 
analysis of models for specific metabolic pathways. It is, 
however, not clear whether, and to what extent, the 
results obtained extend to metabolic pathways in 
general. Many of the metabolic pathways studied today 
comprise thousands of metabolites and reactions. 
Moreover, for most reactions, the laws governing the 
kinetics are not known or only incompletely specified. 
Therefore, a structural modelling approach based on 
qualitative assumptions on network topology and 
reaction kinetics is required.  

Previous studies along these lines [1-5] arrived at 
general conclusions regarding the stability of steady 
states in chemical reaction networks with mass-action 
kinetics. However, often the assumption of mass-action 
kinetics is typically not satisfied in real metabolic 
networks. Recently progress has been achieved for 
networks with general nonlinear rate laws, provided that 
all stoichiometric coefficients are equal to 0 or ±1. Flach 
and Schnell [6] proved quite generally the local stability 
of steady states in metabolic networks with reversible 
single-substrate-single product kinetics. Their proof 
applies to pathways with linear and branched topology, 
and can be expected extend to pathways with cyclic 
topology. Reznik and Segré derived complementary 
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results, first numerically [7] and later analytically [8], 
for cyclic pathways with irreversible single-substrate-
single-product reactions. By means of a different proof, 
we showed quite generally [9] the local stability of 
steady states in case of networks involving only single-
substrate-single product reactions, irrespective of 
network topology. This result was later extended to 
networks including multiple-substrate-multiple-product 
reactions [10]. We concluded that the steady state of 
metabolic networks with nonlinear kinetics is locally 
stable whenever all stoichiometric coefficients are 0 or 
±1. 

Although in most metabolic reactions only one molecule 
of each metabolite participates [11], this is not always 
the case. For example, several molecules of cofactors 
like ATP, ADP, NAD or NADP are involved in a single 
metabolic reaction. Therefore we will drop here the 
standard assumption that the stoichiometric assumptions 
are limited to 0 and ±1. Instead, we will assume that all 
reactions are irreversible. Although in principle all 
chemical reactions are reversible due to the laws of 
thermodynamics, many reactions in metabolic pathways 
can be considered irreversible in practice [12]. 

II. ASSUMPTIONS 

A metabolic pathway is a set of chemical species, also 
called metabolites, together with metabolic reactions 
(catalysed by enzymes) in which these metabolites 
participate [13]. The dynamics of a metabolic pathway 
consisting of m metabolites and n chemical reactions is 
described by a system of ordinary differential equations 
[11]: 

( )x Sv x                                  (1) 

Here x is the m-dimensional vector of metabolite 

concentrations, S is the m×n stoichiometric matrix and 

v(x) is an n-dimensional vector of reaction rates, which 

are functions of the metabolite concentrations. In the 

stoichiometric matrix rows correspond to different 

metabolites and columns correspond to reactions. The 

entry Sij represents the number of molecules of 

metabolite i used in reaction j. If i is a substrate of a 

reaction j then ,0
ij

S   if i is a product then 0
ij

S . If i 

does not participate in a reaction j then 0 .
ij

S    

We assume that all metabolic reactions are ‘monotonic’ 
in the sense that reaction rates are faster at higher 
substrate concentrations and not affected by product 
concentrations due to irreversibly of reactions. Reaction 
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rates are also not affected by metabolites which are 
neither substrates nor products of these reactions. 
Hence, we assume: 

0, if  is a substrate in reaction 
(2)

0, otherwise

j

i

v

x

i j







 

Michaelis-Menten kinetics and Hill kinetics all satisfy 

these assumptions. The gradient matrix 

( ) ( ) /G x v x x    consists of n rows of derivatives of 

reactions rates with respect to the m metabolites. Since 

metabolite i is a substrate in reaction j if 0
ij

S  and a 

product if 0
ij

S , it is obvious from (2) that the matrix 

G has the same sign pattern as 
T

S . 

III. RESULTS 

To assess the local stability of a steady state x
*
, we 

consider the Jacobian matrix at this steady state: 

* *

* *( ( )) ( )
( ( (3)) )

x x x x

Sv x v x
J x S S G x

x x 

 
   

 

 

In view of 
T*

( ) ( )G x S  the Jacobian has a very 

special structure, which is closely related to that of 

stoichiometric matrix, i.e. the topology of the metabolic 

pathway. 

A. Stability in metabolic pathways with single-

substrate-single-product reactions 

A general representation of a linear single-substrate-

single-product metabolic pathway is of the form 

11

1

2

1

1

12 1 22 2

1 1 1 1

(4 )

.



   









v

v

v
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S x
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xS

 

The Jacobian matrix is lower triangular, with negative 

entries on the diagonal: 

2

1

2

1

1

1

1

1

12

22

1 1

1









 


















 


 

 
 

 

 

 

 

 

 

 

 

 
 

n

m

n n

m m

m m

m n nm

v
S

x

v
S

x
J

v
S

x

v v
S S

x x

(5) 

Hence, all the eigenvalues of J are negative, implying 
that in case of linear single-substrate-single-product 
pathways steady states are always locally asymptotically 
stable. In the presence of branching, the Jacobian is still 
lower triangular with negative diagonal, again implying 
local stability of steady states.  

A general representation of a cyclic single-substrate-

single-product metabolic pathway is of the form 

11
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1 1 1 1

1 1

(6 )
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The Jacobian matrix is lower triangular, with negative 

entries on the diagonal: 
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 (7) 

The structure of the Jacobian matrix for cyclic metabolic 
pathways is similar to the one for linear pathways except 
for an additional positive entry in the upper right corner 
of the Jacobian. The presence of this additional entry 
may cause instability. Using the Gershgorin circle 
theorem [14] it can be shown that stability depends on 
the entries of the stoichiometric matrix. Specifically, the 
eigenvalues of J have negative real part if: 
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21 11 1 1 1
... ... . (8)

mn m n n
S S S S S

 
       

Here the left hand side of the inequality (8) represents 
the product of the stoichiometric coefficients that appear 
on the diagonal of the Jacobian matrix. These 
stoichiometric coefficients correspond to the 
consumption of reaction substrates. The right hand side 
of the inequality (8) represents the product of the 
stoichiometric coefficients that appear on the off-
diagonal entries of the Jacobian matrix. These 
stoichiometric coefficients correspond to creation of 
reaction products. Stability of steady states for metabolic 
cycles therefore relies on the structure of the network.   

B. Stability in metabolic pathways with multiple-

substrates-multiple-products reactions 

For linear pathways with multiple-substrates-multiple-

products reactions steady states form manifolds [10]. 

The Jacobian is a block lower triangular matrix. All the 

entries on the diagonal blocks are negative. The 

spectrum of such Jacobian is the union of the 

eigenvalues of diagonal blocks: 

 

 

 

 

 

 

The rank of each diagonal block is equal to one. Hence, 

the only nonzero eigenvalue in each diagonal block Bj is 

equal to the sum of its diagonal entries, i.e. to the trace, 

( )
i i

Tr B  . Since the trace of each diagonal block is 

always negative, the only nonzero eigenvalue 
i

  in i
B  

is negative. Hence, the spectrum of the Jacobian matrix 

in this case consists of negative and zero eigenvalues. It 

can be shown [10] that for metabolic pathways with 

multiple-substrates-multiple-products reactions the 

steady states form a manifold with a dimension 

corresponding to the number of zero eigenvalues. Since 

the rest of the eigenvalues have negative real part, such 

manifolds of steady states are locally attractive. 

The Jacobian matrix for branched pathways with 

multiple-substrates-multiple-products irreversible 

reactions has a structure that is similar to the one for 

linear pathways. In the case there is one metabolite in 

the branching point the eigenvalues spectrum of the 

Jacobian also has the same properties. For example, in 

the branching pathway (10) there is one metabolite x2 in 

the branching point: 

 
 

 

 

 

The Jacobian matrix for the pathway (10) will have the 

same properties as for the linear pathways with multiple-

substrates-multiple-products reactions. In the case there 

is more than one metabolite in the branching point (11) 

the Jacobian matrix might have eigenvalues with 

positive real.  

 
 

 

 

 

This is because the branching leads to the appearance of 

additional derivatives of reaction rates with respect to 

substrates in the diagonal blocks Bj of the Jacobian. 

Such diagonal blocks that corresponds to the branching 

point do not necessarily have rank deficiency one and 

their nonzero eigenvalues do not necessarily have 

negative real part. In the Jacobian for the example (11) 

the diagonal block corresponding to the branching point 

is  

  

 

 

Generally, the rank of this diagonal block is 2. Structural 

kinetic modelling method [15] shows that eigenvalues of 

the Jacobian of the pathway (11) with positive real part 

are possible.  

Structural kinetic modelling also demonstrates that 

stability is also not guaranteed under all conditions for 

metabolic cycles with multiple substrates and products. 

Conditions for stability of steady states in this case are 

to be found.  

IV. CONCLUSIONS 

We investigated the local stability of steady states for 

metabolic pathways with arbitrary stoichiometry; 

focussing on pathways with irreversible reactions. For 

linear pathways local stability of steady states is always 

guaranteed. For branched and cyclic pathways this is not 

always the case. We provided conditions for local 
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stability for these types of pathways. We did not discuss 

the stability properties in metabolic pathways with 

reversible reactions. Numerical simulations show that 

even for linear pathways with multiple-substrates-

multiple-product-reactions stability is not guaranteed. 

This contrasts with previous results on stability of steady 

states in metabolic networks with reversible reactions 

and stoichiometry 0 or ±1 [6-10]. In such networks 

steady states are always locally stable. Apparently, 

stoichiometry plays a crucial role in stability properties 

of steady states in metabolic networks. A natural 

example of the influence of stoichiometry on stability of 

steady states is the well-known phenomenon of 

glycolytic oscillations [16]. 
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