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Appendix A: Detailed information on the examples

Example 2

We assume constant inflows v, =v,. Reaction rates v,(x) and v,(x) are assumed to obey
convenience kinetics (Libemeister and Klipp, 2006), and the reaction v,(Xx) is assumed to
obey Michaelis-Menten Kinetics. The reaction rate equations for the metabolic network (14)
are:
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The parameters for the set of equations above are:v, =1 v, =Vv,, =V, =V, =2, V,;, =1,
K, =...= Ky =1. The steady states for the metabolic network (14) are
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Example 4
The parameters for the reaction rates (26) are: v,, =1, K, =...K, =1, v, =v,, =...=v, =1L



Example 5
The rate equations for the metabolic network (27) are

Voo Xi .
v, =—>—2i=2,34,5

X + K,
The parameters are K, =K,=1 K,=05 K,=001 v,=0.01 v, =v,,=v,;=1
v, =0.1. There are two steady states in this metabolic network: {0.0162, 0.0015, 0.006} and
{0.1728, 0.0369, 0.1592}. The corresponding eigenvalues of the Jacobian matrix are:

{-9.5,-1.67, —0.335} and {0.16, —1.9+0.85i,~1.9—0.85i}.

Example 7
The equations for reaction rates for the metabolic network (45) are:
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The parameters for the equations above are: v, =1, K, =...K, =1, v, =...=v,, =3.
The eigenvalues of the corresponding Jacobian matrix (45) are:
{0.0, —746.7, —4.17, —2.52, —2.52}.

Example 8
The equations for reaction rates for the metabolic network (47) are:
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The parameters for the equations above are: v,=05v,=v,;=1 K,=K;=0.1,
K,=K;=K,=K; =K, =1. The only positive steady state is: x =1, X, =x, =3,
X, =X, =0.2. Eigenvalues of the system are: {0.266, -0.25,—0.7,-0.7, —1.77}.



Appendix B: Stoichiometric matrix of the citric acid cycle

The set of reactions of citric acid cycle is

The corresponding stoichiometric matrix is given by:

Oxaloacetate + Acetyl CoA + H,0 — Citrate + CoA-SH
Citrate — cis-Aconitate + H,O

cis-Aconitate + H,O — Isocitrate

Isocitrate + NAD* — Oxalosuccinate + NAD + H*
Oxalosuccinate — a-Ketuglutarate + CO,

a-Ketuglutarate + NAD*+ CoA-SH — Succinyl-CoA + NADH + H*+ CO,
Succinyl-CoA + GDP + P, — Succinate + CoA-SH + GTP

Succinate + Ubiquinone (Q) — Fumarate + Ubiquinol(QH,)

Fumarate + H,O — L-Malate
L-Malate + NAD" — Oxaloacetate + NADH + H*
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Oxaloacetate
Acetyl —CoA
Citrate
CoA-SH
cis — Aconitate
Isocitrate
NAD"
Oxalosuccinate
NAD
H*

o — Ketoglutarate
Succinyl —CoA
NADH
GDP
Succinate
GTP
Ubiquinone (Q)
Fumarate
Ubiquinol (QH,)
L — Malate



We constructed the stoichiometric matrix for this network, not taking into account H,O and
CO, as variables, without inflow reactions and with outflows of H*, NADH, GTP and
ubiquinol. The stoichiometric matrix consists of 20 rows, representing different metabolites
and 15 columns, representing different reactions (including four outflow reactions).

The rank deficiency of this matrix is five. Therefore, it is possible that this system has a five-
dimensional manifold of steady states.



Appendix C: Stability in branched SS-SP networks

The Jacobian matrix for branched single-substrate-single-product metabolic networks with
general stoichiometry is

P
Sp,p+1g p+1,p+l Sp,y+1gy+1,y+1
Sp+1, p+1g p+1, p
J(x) = Y : (C.1)
0
p,y+1g y+l,y+1 0
M

Here the square px p diagonal submatrix P is
512021 S120922
s
po| 2% | , (C.2)
K K SP—l,PgP,P

Sp.p9pp-1 SppYpp T SppuUpiip ~Spyalyap

with row and column indices in range from 1 to p.
Square diagonal submatrix Y is

-S S S

p+1, p+1g p+L,p+l ~ Zp+l, p+Zg p+2,p+1

Y < Sp+2,p+zgp+2,p+l ) (C 3)

Sy—l,ygy,y

p+1,p+2 g p+2,p+2

Sy,ygy,y—:l _Sy,ygy,y _sy,m+lgm+l,y

with row and column indices in range from p+1 toy. The square diagonal submatrix M is

—S S S

y+1, y+1g y+Ly+l ~ Sy+ly+2 g y+2,y+1

M _ Sy+2,y+Zgy+2,y+l S . (C 4)

y+1,y+2 g y+2,y+2

m—l,mgm,m

Sm,mgm,m—l _Sm,mgmm_sm,m+zgm+2,m
with row and column indices in range from y+1 to m.

The entries J, . (X)=S, ,.18p.1pa aNd I, (X)=S,,1 0119,,,, that ‘connect’ submatrices P
and Y are located on the upper and lower diagonals respectively.

The Jacobian matrix (C. 1) has negative diagonal entries and nonnegative off-diagonal entries
as in the case of the Jacobian matrix for linear networks (18). The matrix (C. 1) is not
tridiagonal. In particular, there are two off-tridiagonal terms J and

‘J p,y+l(X) = sp,y-+-1gy-¢-l,y+l'

y+l,p (X) = Sy+l, y+lgy+1, p



To prove that the Jacobian matrix (C. 1) is a negative M-matrix we need to prove that all its
leading principal minors f,,..., f alternate in sign starting from negative f, <0. Since the
Jacobian matrix (C. 1) is tridiagonal, except for two entries, there are several steps in which
we prove that all leading principal minors f, alternate insign: 1) i<p,2) i=p,3) i=p+1,

4) p+l<i<y,b)i=y,6)i=y+1,7) y+l<i<m,8)i=m.

1) i<p

Leading principal minors until f_, are the same as for linear networks (19):

1
p-1

fp—l = (_1)pHsi,i+1gi+l,i' (C.5)
i=1

Accordingly, leading principal minors until f_, alternate in sign, starting from negative.

2) i=p
We calculate the leading principal minor f, using recursion equation for a determinant of a
tridiagonal matrix (ElI-Mikkawy, 2004):

fp = (_Sp,pg p.p ~ SppuTpip = Sp,y+lgy+1,p) fp—l ~Sp1095,p5p.09p.p1 fp—2

p-1
= (_Sp,pg p.p Sp,p+lg p+Lp Sp,y+:|.gy-¢-1,p )(_1)pHSi ,i+1gi+1,i
= (C.6)

p-2
1
- Sp—l,pg p,psp,pg p,p—l(_l) P H Si,i+1gi+l,i

i=1

= (_Sp,p+lg p+l,p Sp,y+1g y+1,p) fp—l'

Clearly, minor f_ has the opposite sign of the minor f_ .

3) i=p+l
The leading principal minor f_, is

fp+l = (_Sp+1,p+lg p+1,p+1 - Sp+l, p+Zg p+2,p+l) fp - Sp,erlg p+1, p+lsp+1, p+1g p+l,p fp—l

= (_Sp+l,p+1g p+l,p+l Sp+1, p+zg p+2, p+1)(_sp,p+1g p+l,p Sp,y+lg y+l,p) fpfl

‘ ; (C.7)

- Sp,p+1g p+1, p+1°p+1, p+1g p+l,p ' p-1

f

= _Sp+1,p+zg p+2,p+l fp + Sp,y+1g y+1,psp+l, p+1g p+1,p+l ' p-1

Since, f has the opposite sign of f_,,and f , hasthe samesignas f ,,then f , hasthe
opposite sign of f .




4) p+l<i<y
Leading principal minors after f_, until f _, are of the form
;
fp+r = _Sp+r,p+r+1g p+r+l,p+r fp+r—1 + (_1)r+1sp,y+lgy+l,p fp—lHSp+j,p+j gp+j,p+j ) (C 8)
j=1

We prove the equation (C. 8) by induction. It holds for r =1 (equation C. 7). Assuming that
the equation (C. 8) is true, we calculate the next leading principal minor using the recursion
equation for a determinant of a tridiagonal matrix:

fp+r+l = (_Sp+r+1,p+r+1g p+r+L,p+r+l Sp+r+1,p+r+2g p+r+2,p+r+1) fp+r
- sp+r,p+r+lg p+r+1,p+r+lsp+r+1,p+r+1g p+r+l,p+r fp+r—l
= (_Sp+r+l, p+r+1g p+r+1,p+r+l Sp+r+1,p+r+zg p+r+2,p+r+l)[_sp+r,p+r+1g p+r+1,p+r fp+r—l
r
r+1
+(-1) SpyaYyp fp&H Sp+j.p+i9 p+j,p+j] (C.9)
j=1
- Sp+r, p+r+1g p+r+l, p+r+lSp+r+1, p+r+1g p+r+1,p+r fp+r—1
r+1
_ r+2
- _Sp+r+l, p+r+zg p+r+2,p+r+l fp+r + (_1) Sp,erlg y+1,p fp—lH Sp+j,p+j g p+j,p+j
j=1

The equation (C. 9) is according to the equation (C. 8), which concludes the proof. Therefore,
the leading principal minors in range of p+1<i<y alternate in sign.

From the equation (C. 8) by setting p+r=y—1 we can express the leading principal minor
f

y-1°

y-p-1
_ y-p
fyfl =Sy1yYyy1 fy72 +(-1) Spya9yi1p fpfl H Speipripriprit (C.10)
=1
5 i=y
The leading principal minor f is
fy = (_sy,ygy,y - Sy,m+lgm+1,y) 1:yfl ~Sy1yYyySyyYy .y fy72
y-p-1
_ y-p
- (_sy,yg vy Sy,m+1gm+1,y)[_Sy—l,ygy,y—l fy—2 + (_l) Sp,erlg y+1,p fp—l H Sp+j,p+jg p+j,p+j]
j=1
: (C.11)
~Sy1y9yySyyYyya fny
. y-p
_ y-p+
- _Sy,m+1gm+1,y fy—l + (_1) Sp,y+1gy+l,p fp—lep+j,p+jgp+j,p+j
i=1

The first term has the opposite sign of f_, and the second term has the sign (-1)”. Overall,
the leading principal minor f has the opposite sign of f .




6) i=y+1
The leading principal minor f , is

fy+1 = (_Sy+1,y+1g y+Ly+ Sy+1,y-¢—zg y+2,y+1) fy

+ (_1) yre Sp,erlg y+1,y+1 (_1) e Sy+l,y+1g y+1,p f p-1 fy (C 12)

= (_Sy+l,y+lg y+1,y+1 - Sy+l,y+zg y+2,y+1) fy - Sp,erlg y+l,y+lsy+1,y+lg y+1,p fp—l fy'

Here f, is the determinant of the submatrix Y (C. 3). The determinant f,_, is

5 y—p-1

fyfl =514y 41 fny +(-1)7° H SpripriTpeipeir (C. 13)
j=1

The equation (C. 13) can be proved by induction in the same manner as the equation (C. 10).
Here we omit the proof of equation (C. 13).

The determinant fy therefore is

fy - (_Sy,ygy,y N Sy,m+lgm+1,y) fy—l ~Sy-1y9y,ySyy By ya fy—Z
. y=p-1
= (_Sy,ygy,y - Sy,m+lgm-¢-1,y)[_sy—l,ygy,y—l fy—2 + (_1 P H Sp+j,p+jgp+j,p+j]
3 = (C. 14)

~Sy1y9yySyyYyya fy72

y-p

— £ y-p+l

- _Sy,m+1gm+1,y fy—l + (_1) Hsp+j,p+jg p+j,p+j
j=1

Using the equations (C. 12) and (C. 14) we can calculate the leading principal minor f :

fy+l = (_Sy+1,y+lg y+lLy+l sy+l,y+Zgy+2,y+1) X

y=p
y—-p+1
x [_Sy,m+lgm+l,y fyfl +(-1) Spy1Yyiap fpfll_[ Spijp+i9 p+J,p+J’]
j=1

f . x

S o1

- Sp,y+lg y+1,y+1 y+1,y+1g y+1,p

~ y-p
X [_Sy,m+lgm+l,y fy—l + (_1) - p+1H Spﬂ',pﬂ' g p+jyp+j] (C 15)
j=

f +s f

y+1,y+2 g y+2,y+1 'y y+1, y+1g y+1, y+1sy,m+1g m+1,y

f f

p-1y-1°

= -5 y-1

+S S

p, y+1g y+1,y+1Yy+1, y+1g y+1,p Sy,m+1g m+1,y

Then we expand f _, from the equation (C. 10) and fy_l from the equation (C. 13) and cancel
the similar terms (underscored) in (C. 13). Then the terms including f,_, and f _, are left and
we expand this terms further. We continue so until we get to the terms f , and f .
Denoting

1

y—-P
— y-p-2
fx—2 - (_1) Hsp+j—1,p+jgp+j,p+j—l'
j=3



we get
f_ f

X—-2 " p+l

f f, +s

y+1,y+2 g y+2,y+1 'y y+1, y+1g y+1,y+lsy,m+1g m+l,y

S f f (C. 16)

X—2 " p+l*

vl = —S

+S

p,y+1g y+1,y+1 y+l,y+lg y+1, psy,m+1gm+l,y

is the first diagonal term of the submatrix (C. 3),
S Inserting the expressions for f

Here f,,,
fp+l =-3
7) we get

f

and f_, (equation C.

p+1, p+lg p+1, p+1 - p+l, p+2g p+2,p+1 " p+1

f. +s

= _sy+1,y+zg y+2,y+1 'y y+1,y+1g y+1,y+1sy,m+lg m+1,y f><—2 X

y+1
[_Sp+1, p+zg p+2,p+1 fp + Sp,y+1g y+1, psp+1, p+1g p+1, p+l fp—l]
+ Sp,y+1g y+1,y+1Sy+l,y+1g y+l,psy,m+1gm+1,y fx—2 fp—l[_Sp+1, p+lg p+l,p+l Sp+l,p+zg p+2,p+l] (C 17)
= Syay29yi2,yn fy +Syi1y19y1y1SyminImiry fes [_Sp+1, p+29ps2,ps1 fp]

+ Sp,y+lg y+l,y+lsy+1,y+1g y+1, psy,m+1gm+l,y fx—z fp—l[_SpH, p+29 p+2, p+1]

Inserting the equation (C. 6) for f  we get

f f f . x

y+1 = _Sy+1,y+zgy+2,y+1 fy + Sy+1,y+1g y+1,y+1sy,m+1gm+1,y x=2 " p-1

X [_Sp+1, p+Zg p+2, p+1(_sp, p+1g p+lp Sp,y+1g y+1,p )]

+ Sp,y+1g y+1,y+1sy+1,y+1g y+1, pSy,m+1gm+1,y fx—2 fp—1[_sp+l, p+Zg p+2, p+1]

f,,f

= Sy+1,y+2gy+2,y-¢-1 fy + Sy+1,y+1g y+1,y+1sy,m+1gm+1,ysp+1,p+zg p+2,p+1sp,p+1g p+l,p "x-2 " p-1°

Denoting

y=p
fX :(_l)yipHSpH—lypHgp+j,p+J’—1’ (C- 18)
j=1

we get the expression for the leading principal minor f

f f f (C. 19)

y+1 = _Sy+l,y+zgy+2,y+1 1:y + Sy+1,y+1gy+1,y+lsy,m+1gm+1,y X p-1°

The first term has the opposite sign to the sign of f and the second term has the sign
(1)’ (-D*(-1)"* = (-1)”*, which is the opposite to the sign of f,. Overall, the leading
principal minor f , has the opposite sign of f, .

7) y+l<i<m
The leading principal minor f_, is

fy+2 = (—5y+2,y+2gy+z,y+z - 3y+2,y+3gy+3,y+2) fy+1 =Syiayr29yiay2Syi2yr29yin v fy
= (_Sy+2,y+2 Qyi2,y+2 ~Syi2,y+39 y+3,y+2) X
x [_Sy+1,y+zgy+2,y+l fy +Sy 1y 9y 1Sy ma Imany f, fp—l] (C. 20)
=S Sy+2,y+zgy+2,y+l fy
S

y+l,y+zgy+2,y+2

= _Sy+2,y+Sgy+3,y+2 fy+1 - y+2,y+Zgy+2,y+Zsy+l,y+lg y+l,y+1sy,m+1g m+1,y fx fp—l'



The sign of f_, is the opposite of f .

Leading principal minors after f . until f_. are of the form

y+1
d

fy+d = _Sy+d,y+d+lg y+d+1,y+d fy+d—l - (_1)d Sy,m+1gm+l,y fx fp—lHSy+i,y+i gy+i,y+i . (C 21)

i=1

The proof of the equation (C. 21) is by induction as for the previous similar case of the
equation (C. 8). The sign of the first term in (C. 21) is the opposite of f . The sign of the

second term is (—1)**(=1)* " (-1)"" = (~1)***, which is also the opposite of frugs-

From the equation (C. 21) by setting y+d=m-1 we get d=m-y-1 and the leading
principal minor f_:

m-y-1
fm—l = _sm—l,mgm,m—l fmfz - (_1)m_y_1sy,m+lgm+l,y fx fp—l H Sy+i,y+igy+i,y+i ) (C 22)
i=1
8) i=m
The last leading principal minor is
fm = (Sm,m ym,m - Sm,m+zgm+2,m) fm—l - Sm—l,mgm,msm,mgm,m—l fm—z
= (Sm,m ym,m - Sm,m+ng+2,m) x
m-y-1
X [_Sm—l,mgm,m—l fm—2 - (_l)miyilsy,mﬂgmﬂ,y fx fp—l H Sy+i,y+igy+i,y+i] (C 23)

- Sm—l,m gm,msm,m g m,m-1 fm—z

m-y

— m-y

- _Sm,m+2gm+2,m fm—l - (_1) Sy,m+1g m+1,y fx fp—lH Sy+i,y+i gy+i,y+i '
i=1

The sign of the first term is the opposite of f_,. The sign of the second term is
(D)™ (=2)"" = (=)™, which is also different from the sign of f__. Overall, all leading
principal minors of the Jacobian matrix (C. 1) alternate in sign starting with negative.
Combining this with the fact that off-diagonal entries of (C. 1) are non-positive results in that
the Jacobian matrix (C. 1) is a negative M-matrix.



Appendix D: Stability in networks with tree topology

We present a part with two branches of a metabolic network with tree. Two branching points
are at metabolites X~ and X, (D. 1). The first branch ends up on the metabolite X, the
second branch ends up on the metabolite X, , and the network potentially branches more.

Vl s X, < V2 y . Vp > X VP+1 N L Vy > X Vm+1
l oo N\ 7 p\ 7 e e e N\ 7 y
\" V Vv
Xy 2 X s 5 X, —™2
v
X, « 5 .

(D. 1)

Below we present a general structure of the Jacobian matrix for metabolic network with tree
topology (D. 2). This part of the Jacobian matrix corresponds to two branches part of
metabolic network with tree topology (D. 1), and continues with the similar structure if

network branches more.

P
sp,p+lg p+1 p+1 Sp,y+1gy+1,y+l
Sp‘erlg y+1,y+1
Y
0
sp‘y+lgy+1,y+l O
J(x) = W
Sw+1,wgw+l,w+1

Sw+1,w+1 g w+1,w

(D.2)

Here the square diagonal submatrix W is

_Sy+1, y+1g y+Ly+l Sy+1,y+2 g y+2,y+1 Sy+1, y+2 g y+2,y+2

Sy+].,y+zgy+2,y+2

S

w—l,wgw,w

Sw,wgw,w—l _Sw,wgw,w - SW,W+lgW+l,W

- Sw,z+1gz+l,w

. (D.3)



The diagonal submatrix W has the same structure as the submatrix Y, except for the presence
of additional negative term —s_,..g,,,, in the last diagonal entry, which corresponds to the
second branching, similar to the last diagonal entry in the submatrix P (C. 2). Depending on
the number of next branches the structure of the matrix repeats further with Y and W
submatrices, and with additional tridiagonal entries. Therefore, the matrix (D. 1) simply
repeats the structure of the matrix (C. 1) with additional repetitions of it for every branch.
Since the matrix (D. 1) repeats the structure of the matrix (C. 1) the proof for the alternation
of signs of leading principal minors is the same. The presence of additional negative term in
the diagonal entry of W submatrix does not influence the alternation of sign of leading
principal minors. Combining this with the fact that off-diagonal entries of (D. 1) are
nonnegative we conclude that the Jacobian matrix for SSSP metabolic networks with general
stoichiometry and tree topology is negative M-matrix.



Appendix E: Stability in cyclic SS-SP networks

We prove Theorem 4 by showing condition for the Jacobian matrix (22) to be an M-matrix,
and therefore the unigqueness and local asymptotic stability of steady state if it exists. The
diagonal entries of J(x) (22) are negative while the off-diagonal entries are positive. By
showing condition for which all leading principal minors of —J(x) are positive we get the
condition for —J(x)to be an M-matrix. Since leading principal minors of —J(x) (22) are
lower triangular with positive diagonal entries, they are always positive until the last one,
which is the determinant of the Jacobian matrix. It remains to determine the condition for the

determinant of —J(X) to be positive.

The determinant of negative of the Jacobian matrix (22) matrix is

det(3 () = (-1)""(-5, 00 ) D" ] 5,011

+(=1)™"s f

m,m+1g m+l,m "m-1°*

Here the leading principal minor f_ , is lower triangular and is equal to

m
fm—l = (Sk,k+1gk+l,k +Sk,m+zgm+2,k) H Si1iGiia-

i=2,i=k

Combining the equations (E. 1) and (E. 2) we get

det(_‘] (X)) = _Sl,m+1gm+l,mH Si,igi,i—l
i=2

m
+Sm,m+lgm+1,m(Sk,k+1gk+1,k +Sm,m+2gm+2,m) H Si—l,igi,i—l'
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The determinant is positive if

m+1

m
(Sk,k+1gk+l,k +Sm,m+2gm+2,m) H Si—l,i > Sl,m+1gk+1,k Hsi,i'
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The determinant is positive if the inequality (23) in the Theorem 4 holds.

(E. 1)

(E.2)

(E. 3)

(E. 4)



