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e Stoichiometry and network structure determine uniqueness and stability of steady states.
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e In multiple-substrate-multiple-product networks the set of steady states can form a manifold.
¢ In metabolic networks with simple stoichiometry steady states are locally asymptotically stable.
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ABSTRACT

Metabolic networks are often extremely complex. Despite intensive efforts many details of these net-
works, e.g., exact kinetic rates and parameters of metabolic reactions, are not known, making it difficult
to derive their properties. Considerable effort has been made to develop theory about properties of
steady states in metabolic networks that are valid for any values of parameters. General results on
uniqueness of steady states and their stability have been derived with specific assumptions on reaction
kinetics, stoichiometry and network topology. For example, deep results have been obtained under the
assumptions of mass—action reaction kinetics, continuous flow stirred tank reactors (CFSTR), concordant
reaction networks and others. Nevertheless, a general theory about properties of steady states in
metabolic networks is still missing. Here we make a step further in the quest for such a theory. Speci-
fically, we study properties of steady states in metabolic networks with monotonic kinetics in relation to
their stoichiometry (simple and general) and the number of metabolites participating in every reaction
(single or many).

Our approach is based on the investigation of properties of the Jacobian matrix. We show that
stoichiometry, network topology, and the number of metabolites that participate in every reaction have a
large influence on the number of steady states and their stability in metabolic networks. Specifically,
metabolic networks with single-substrate-single-product reactions have disconnected steady states,
whereas in metabolic networks with multiple-substrates—multiple-product reactions manifolds of steady
states arise. Metabolic networks with simple stoichiometry have either a unique globally asymptotically
stable steady state or asymptotically stable manifolds of steady states. In metabolic networks with
general stoichiometry the steady states are not always stable and we provide conditions for their sta-
bility. In order to demonstrate the biological relevance we illustrate the results on the examples of the
TCA cycle, the mevalonate pathway and the Calvin cycle.
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1. Introduction

Metabolism is a key characteristic of life. Understanding of metabolism, in particular the number of steady states in metabolic networks
and their stability, is crucial for various disciplines in the life sciences. This is a difficult task, since even in the simplest organisms
metabolic networks are very complex (Ma and Zeng, 2003). The complexity arises due to the large number of metabolites and reactions,
and an intricate topology of the network.

The availability of high-throughput omics data and the development of statistical and structural methods for the analysis of these data
allowed the reconstruction of many metabolic networks (Jamshidi and Palsson, 2008). However, even in networks where the structure has
been unraveled, the exact form of the reaction kinetics typically is not known. If the reaction kinetics can be inferred, many kinetic
parameters are often not known. In view of this complexity and the lack of detailed quantitative information there is a need for developing
more qualitative techniques to investigate the properties of metabolic networks.

Two aspects are crucial for the understanding of a metabolic network. The first one is the network structure, determined by network
topology and stoichiometry. Network topology is defined by interconnections between metabolites via reactions they participate in.
Stoichiometry is specified by the number of molecules by which the metabolites participate in different reactions. The second is reaction
kinetics. The solution to the problem of lack of quantitative knowledge about metabolic networks is to investigate their properties based
on general assumptions on their structure and kinetics. This direction of research is known as chemical reaction network theory (Feinberg,
1979). The main results of chemical reaction network theory are reviewed in several papers (Feinberg, 1979; Gunawardena, 2003; Angeli,
2009). Chemical reaction network theory can be structured by different approaches for studying the number of possible steady states and
their stability. The first approach is based on concepts of balancing and related Deficiency theory (Horn and Jackson, 1972; Feinberg, 1987,
1988, 1995; van der Schaft et al., 2013, 2015). The second approach is based on construction of the so called species-reaction graph
(Craciun and Feinberg, 2006). The third approach is based on the properties of the stoichiometric and Jacobian matrices. The present paper
is based on the third approach. We briefly review results on the third approach below. For CFSTR networks, i.e., with inflow and outflow of
all metabolites, and with mass action kinetics Craciun and Feinberg (2005) showed that the network does not have the capacity for
multiple steady states if the determinant of the Jacobian matrix is not equal to zero, and it does have such capacity if the determinant of
the Jacobian matrix is equal to zero. For CFSTR networks with non-autocatalytic (NAC) kinetics Banaji et al. (2007) showed that if the
stoichiometric matrix has the 'SSD property' (strongly sign determined), i.e., the property that all of its submatrices are either singular or
else 'sign nonsingular' (i.e., sign of its determinant is nonzero and can be determined from the signs of its entries), then the network
cannot admit multiple steady states. Another line of research concentrates on the number of metabolites participating in each reaction as
substrates and products. In particular it was shown that in metabolic networks with a single substrate and single product in each reaction
(SSSP) and with Hill kinetics multiple steady states are precluded (Lei et al., 2010), while in the case when multiple substrates and
products (MSMP) may participate in a single reaction, then multiple steady states are precluded if and only if the Jacobian matrix is
nonsingular (Guo et al., 2012). Banaji and Baigent (2008) proved uniqueness and global asymptotic stability of a steady state for SSSP
metabolic with monotonic kinetics and with simple stoichiometry (stoichiometric coefficients are + 1 or 0) for any network topology.
Independently, Flach and Schnell (2010) showed that in SSSP metabolic networks with monotonic kinetics with simple stoichiometry and
with linear and branched topologies a steady state is locally asymptotically stable. Reznik and Segré (2010) conjectured local asymptotic
stability of steady states for SSSP metabolic networks with simple stoichiometry, monotonic kinetics and with irreversible reactions. Later
Reznik et al. (2013) proved this analytically.

In metabolic networks in the majority of pathways it is the case that in each reaction only one molecule of every reactant metabolite
participates (this is referred to as simple stoichiometry) (Palsson, 2011). An example of SSSP pathways with simple stoichiometry is the
metabolism of xylose. The most common type of metabolic pathways is MSMP with simple stoichiometry. Examples are glycolysis, the
TCA cycle, galactolysis, pentose phosphate pathway, and many others.

However, simple stoichiometry is not always the case in metabolic networks. For example, in such SSSP pathways as the Calvin cycle,
the mevalonate pathway, and thiolysis reactions, several molecules participate as substrates or products in a single metabolic reaction
(general stoichiometry). Finally, the urea cycle is an example of an MSMP network with general stoichiometry.

Together there are four combinations of stoichiometry types (simple, general) and number of metabolites as substrates or products in a
reaction (SSSP, MSMP), and they all have biological relevance. The aim of this paper is to investigate the number of steady states (single or
multiple) and their stability in each of these network types under the general assumption of monotonic kinetics. Since the case of SSSP with
simple stoichiometry has been investigated in detail in previous work, as we described above, we concentrate our efforts on the three
remaining cases. We study these network properties by investigating the properties of the Jacobian matrix.

This paper is structured as follows. We start in Section 2 with an introduction to metabolic networks and important definitions. Next,
we give general results on steady states of metabolic networks without any assumptions on reaction kinetics and network structure
(Section 3). Then, in Section 4 we consider properties of steady states and their stability in metabolic networks with an assumption that all
reactions are of single-substrate-single-product (SSSP) type with simple and general kinetics. In Section 5 we give results on properties of
steady states and their stability in multiple-substrate-multiple-product (MSMP) metabolic networks with simple and general kinetics. We
give an overview of our results and their implications in the Section 6.

2. Metabolic networks

A metabolic network is a set of chemical species, also called metabolites, together with metabolic reactions in which these metabolites
participate.

We denote the metabolite number i with the capital letter X; and its concentration by x;. The dynamics of metabolite concentrations in
a metabolic network consisting of m metabolites and n chemical reactions is described by a system of ordinary differential equations
(Palsson, 2011):

X = Sv(x). (D)
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Here x is the m-dimensional vector of metabolite concentrations, S is the m x n stoichiometric matrix and v(x) is an n-dimensional
vector of reaction rates, which are functions of the metabolite concentrations. In the stoichiometric matrix the rows correspond to dif-
ferent metabolites and the columns correspond to different reactions. The entry of the stoichiometric matrix s; represents the number of

does not participate in reaction j then S;; =s;;=0.

We also assume that the rates of inflow reactions are constant. On contrary, outflow reaction rates depend on metabolite
concentrations.

Importantly, the Eq. (1) allows to decompose the dynamics of metabolite concentrations in a structural part (topology and stoichio-
metry), represented by the stoichiometric matrix S, and a kinetics part, represented by the vector v(x).

2.1. Topology and stoichiometry

The nonzero entries of the stoichiometric matrix specify interconnections of metabolites by metabolic reactions, i.e., topology of the
network (in the sense of graph topology). The values of nonzero entries specify the stoichiometry, i.e., the number of molecules with
which each metabolite participates in reaction.

In case of simple stoichiometry of metabolic networks only one molecule of every reactant metabolite participates in reactions. This
leads to the fact that the entries of the stoichiometric matrix are + 1 or 0. In the case of general stoichiometry metabolites may participate
in reactions with arbitrary number of molecules, and therefore corresponding stoichiometric coefficients may admit arbitrary integer
values.

Metabolic reactions may involve single metabolite as substrate and single metabolite as a product (single-substrate-single-product
reactions or SSSP), and may involve multiple metabolites as substrates and products (multiple-substrate-multiple-product reactions or
MSMP). The majority of metabolic networks have metabolic reactions with multiple substrates and products (Steuer and Junker, 2008).

Metabolic networks can have different topology. Below we give several examples.

Linear network:

X, X, L x @)

The dynamics of the linear network (2) can be represented by the following system of differential equations (left), and in matrix form
X = Sv(x) (right):

. . v
X1 = V1 —V2(x) % 1 -1 0 0\, (]x)
. . 2
Xy = Vo (X) —V3(X) X |1=]10 1 -1 0 vs |- 3
X3 =V3(X) —Va(X) X3 0 1 -1 va(®)
Branched network:
V1
X 1 -1 0 0 0 0 Vo (X)
DX X, X | X o1 -1 -1 0 o0 V3(X) @
Xy, | % 0 1 0 -1 0 v4(X)
Xa 0 O 0 1 0o -1 V5(X)
Ve(X)
Cyclic network:
Vi
X1 1 -1 0 1 0 Vo (x
R L 1 T T 1 5
Vv
X3—=  \# 0 1 -1 -1/ | vaw
Vs5(X)

Networks that consist of combinations of linear and branched parts and contain no cycles are called networks with tree topology.

A reaction complex is a set of substrates or products of a reaction. That is a set of substrates of a metabolic reaction is one complex and
set of products is another complex. For example, in the following reaction X; +X; <> X3 the reaction complexes are C; = {X; +X,} and
C= {X3}).

A path between nodes i and j in a network is a sequence of links that lead from the node i to node j.

A complex C; said to be connected to complex C; if there exists a path between them. Note, that path and connectedness does not imply
directionality.

A linkage class is a maximal set of connected reaction complexes. Reaction set

X1+Xy X3
X5 Xg

has two linkage classes X1 +X; <> X3 and X5 < Xg.
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2.2. Reaction kinetics

Topology and stoichiometry of metabolic networks are often known, while the specific dependencies of reaction rates on metabolite
concentrations are typically not well determined in practice. In theoretical works the following reaction rates are often assumed:

® Mass-action kinetics: v(x) =k []xs—k_ ] xp, where v(x) is a scalar function, k; and k_ are constants, s is an index of reaction sub
s P

strate, p is an index of reaction product, x; is the concentration of reaction substrate Xs and x; is the concentration of reaction product
Xp.

® Michaelis—Menten kinetics: v(x) = ‘,’("'f)f, where x is the concentration of reaction substrate, vy is the maximal reaction rate and K, is
the Michaelis constant.

e Hill kinetics: v(x;) = % where x is the concentration of reaction substrate, and K and n are a positive constants.

e Convenience kinetics (Liebermeister and Klipp, 2006): v(xs,Xp) =

Xs Xp
Vi — Vs

e where v; and v, are maximal forward and reversed reaction
[

rates respectively, x; and x, are concentrations of reaction substrate and product respectively, Ks and K, are constants of equilibrium.

All these types of kinetics have in common is that the reaction rate is faster at higher substrate concentrations, slower at higher product
concentrations, and not affected by other metabolites than substrates and products. We define monotonic reaction kinetics as follows:

gi(®) >0, if X; is a substrate of reactionj, ie. S;j=—s;;<0

0Vj(X) _
oX;i

—g;i®0 <0, if X; is a product of reactionj, i.e. S;;=s;;>0 (6)

gji(x) =0, otherwise, ie. S;=0

Note that s;; and g;;(x) are always nonnegative numbers. As indicated by the notation g;;(x) depend on metabolite concentrations x. For
each g;;(x) this dependence will be suppressed from now on, and we will write g;; instead. This assumption of monotonic kinetics is very
natural and general. For example, mass—action, Michaelis-Menten kinetics, Hill kinetics and convenience kinetics are monotonic. The
monotonicity property (6) excludes the possibility of regulation. For example, substrate inhibition of reaction and the influence of
metabolites that are not substrates or products are not possible. Monotonicity assumption (6) also excludes autocatalytic reactions.

We define irreversible reactions as reactions for which reaction rate does not depend on the concentration of a product. That is, if X; is
the product in an irreversible reaction j then dv;(x)/dx; = 0. For irreversible reactions the set of inequalities that describe monotonic
kinetics (6) simplifies to

g;i(®) >0, if X; is a substrate of reactionj, ie. Sjj=—s;;<0

aVj(X) _
24

)

gi(x)=0, otherwise, ie. S5;;>0

Although in principle all chemical reactions are reversible due to the laws of thermodynamics, many reactions in metabolic networks
can be considered irreversible in practice (Cornish-Bowden and Cardenas, 2000). In fact, in many organisms there are more irreversible
reactions than reversible ones. For example, in Saccharomyces cerevisiae 719 out of 1149 reactions are irreversible, in Helicobacter pylori 314
reactions out of 479 are irreversible (Nishikawa et al., 2008). Under some natural conditions more than 92% of metabolic reactions are
‘effectively’ irreversible (Nishikawa et al., 2008).

2.3. Linear approximation

We linearize dynamical system that represents behavior of a metabolic network by the means of the Jacobian matrix. For a dynamical
system X = f(x) the Jacobian is denoted as J(x) = %. In our case

ISVX) _ V(X))
[24

J®=—0 =5-Dv(x). ®)

The matrix Dv(x) = (dv(x)/0x) is the gradient matrix (Palsson, 2011). For each x Dv(x) is n x m matrix, where n is the number of reactions
and m is the number of metabolites. The matrix Dv(x) describes the dependencies of the reaction rates on the concentrations of meta-
bolites. A row j of the matrix Dv(x) represents derivatives of the rate of a reaction j with respect to the concentration of different
metabolites, while each column i represents the derivatives of different reaction rates with respect to the concentration of a metabolite X;.

We define the matrix Sy as the stoichiometric matrix in which all the entries S, that correspond to inflows of all metabolites k in
reactions m are replaced by zeroes. It follows that the Jacobian matrix (8) can be presented as

JX) =SoDv(x). €))

This is because the entries of the gradient matrix that correspond to the inflow entries (recall that the inflow reaction rates are
assumed to be constant) of the stoichiometric matrix are zero. Therefore, the inflow entries of the stoichiometric matrix will always be
multiplied by zero entries of the gradient matrix, and inflow entries of the stoichiometric matrix will not affect the entries of the Jacobian
matrix.

Due to the monotonicity assumption (6) we have

sign(g; (x)) = sign(—Soi)- (10)
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The expression (10) shows an important relation between the structure of metabolic network, represented by the matrix Sy, and
reaction kinetics, represented by the matrix Dv(x).

Example 1.

The gradient matrix and Sp matrix for the network (2) obtained from the structure of the stoichiometric matrix, based on the
assumptions listed above are

0 0 0
821 —822 0

So=|0 1 -1 0 |, Dvx= 11
0 0 0 1 -1 ®) 0 832 833 an
0 0 843
The Jacobian matrix is
—821 822 0
Jx)=SoDv(x)=| 821 —832—822 833 . 12)
0 832 —843—833

3. Steady states

At steady state concentrations of all metabolites remain constant, i.e. X =f(x*) = 0. The Eq. (1) at steady state is
Sv(x*)=0. (13)

Below we first investigate general properties of steady states in metabolic networks without applying any assumptions. The key
question is there a single steady state or multiple? In case there are multiple steady states then how are they organized? To answer these
questions we investigate the Jacobian matrix (9).

Disregarding any assumptions on kinetics, stoichiometry and topology we can state the following theorem.

Theorem 1. Let at least one steady state x* exist. Let rank(Sg) = m—k. Then the set of steady states is a manifold of dimension d > k.

Proof. By definition Sv(x*) = 0. By the Implicit Function Theorem the set of steady states {x*|Sv(x*) =0} is a manifold with dimension
corresponding to the rank deficiency of the Jacobian matrix J(x*). For arbitrary matrices A and B rank(AB) < min(rank (A), rank (B)) (Datta,
2006). Since J(x) = SoDv(x) then rank(J(x*)) < rank(Sp). Suppose we have rank(Sy) = m—k then the rank deficiency of J(x*) is at least k and
therefore the set of steady states {x*|Sv(x*) =0} is a manifold with dimension d > k.o

Remark. It is possible that the manifold of steady states consists of a number of disconnected components. In case d = 0 the steady states
are disconnected points in the space of metabolite concentrations. As a result of the Theorem 1 to get disconnected steady states full rank
of the Jacobian matrix is required.

Now, the question is under which conditions on stoichiometry a metabolic network can be expected to have manifold of steady states?
The easiest case occurs when several metabolites participate in only one reaction complex (Example 2). In this case the corresponding
rows of the stoichiometric matrix will be equal, increasing the rank deficiency of the stoichiometric matrix, and thereby increasing the
rank deficiency of the Jacobian matrix. When several reaction complexes share a metabolite then it is possible that the sum of several rows
of Sy is equal to zero, which also increases the rank deficiency of the stoichiometric and Jacobian matrices.

Example 2.

Consider the following metabolic network
LX-2X,
X1 +Xp X3+ Xgeb X5~ (14

The dynamic behavior of this system x = Sv(x) is represented by

10 -1 0 O 12
X1 01 -1 0 O Z
|=]/00 1 -1 o0 v3(x) |. (15)
X3 00 1 -1 0 Vv4(X)
00 0 1 -1 V5(X)
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Fig. 1. The set steady states of the metabolic network (14) is two-dimensional manifold. The two-dimensional manifold is depicted in the space of concentrations x;, X, and
x3. The vector field (blue arrows) represents the convergence of solutions to the two-dimensional manifold of steady states.

The matrix Sy is

00 -1 0 0O
00 -1 0 0O
So=l00 1 -1 o0 (16)
00 1 -1 0
00 0 1 -1

The rank deficiency of Sy is equal to two. Accordingly, the set of steady states comprises manifold of dimension larger of equal to two.
By making specific assumptions on reaction kinetics, this manifold can be calculated explicitly (Supplementary Appendix A), as illustrated
in Fig. 1.

Example 3.

The stoichiometric matrix for the TCA cycle (Supplementary Appendix B) has rank deficiency equal to five. Hence, irrespectively of
specific reaction kinetics and parameters, we can already conclude that a steady state, if it exists, is part of a steady state manifold of
dimension larger or equal to five.

The rest of the paper is focused on stability of steady states. Here again the Jacobian matrix plays a very important role. A steady state is
locally asymptotically stable if and only if all eigenvalues of the Jacobian matrix (9) have negative real part (Arrowsmith and Place, 1992).
Since stability is easier to judge in single-substrate-single-product networks we will treat this case first and after that we generalize to
multiple-substrate-multiple-product networks.

4. Single-substrate-single-product metabolic networks

First, we consider the case of simple stoichiometry. Banaji and Baigent (2008) proved the following theorem.

Theorem 2. (Banaji and Baigent, 2008) Consider single-substrate-single-product metabolic network. Assume the stoichiometry is simple and
reaction rates are monotonic. Then the steady state, if it exists, is unique and globally asymptotically stable for any network topology.

As we mentioned above, majority of metabolic pathways have simple stoichiometry. However, there are pathways with general
stoichiometry which Theorem 2 does not cover. Consider for example mevalonate pathway in Eq. (17).

—2 A — CoA—AA — CoA—HMG — CoA—MA—M - 5 — PP—IPP—>DMAPP—. 17)

Here, A-CoA is acetyl-CoA, AA-CoA is acetoacetyl-CoA, HMG-CoA is 3-hydroxy-3-methylglutaryl-CoA, MA is mevalonic acid, M-5-P is
mevalonate-5-phosphate, M-5-PP is mevalonate-5-pyrophosphate, IPP is isopentenyl-5-pyrophosphate, DMAPP is dimethylallylpyrophosphate.

Mevalonate pathway produces molecules IPP and DMAPP which are used to make isoprenoids, a rich class of over 30,000 molecules,
such as steroid hormones, cholesterol, coenzyme Q10, vitamin K and others. In the first reaction of mevalonate pathway two molecules of
acetyl-CoA (A-CoA) are combined producing acetoacetyl-CoA (AA-CoA) and CoA-SH. The concentration of cofactor CoA-SH can be assumed
to be constant, so this pathway can be considered as SSSP, as it is depicted in Eq. (17).

Theorem 3 below generalize Theorem 2 to SSSP networks with general stoichiometry, and with linear, branched and tree topology.

We will prove the results below using the theory of M-matrices. By definition an M-matrix is a matrix with nonpositive off-diagonal
entries, J;;(x) <0 for all i #j, and all leading principal minors positive (Horn and Johnson, 1991).

A leading principal minor f, of a matrix is a square upper-left submatrix that consists of entries in rows and columns from 1 to r.

M-matrices is an important class of matrices with many equivalent properties and important relationship to stability and injectivity
(Plemmons, 1977).
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Lemma 1. If —J(x) is an M-matrix then the steady state in a corresponding metabolic network, if it exists, is unique.c

Proof. The class of nonsingular M-matrices is a subset of class of P-matrices. There is a result stating that if the Jacobian of a function is a
P-matrix (or equivalently a negative P-matrix), this guarantees injectivity of the set of a function on any rectangular region of R" (Gale and
Nikaido, 1965).

Lemma 2. If —J(x) is an M-matrix then the steady state, if it exists, in a corresponding metabolic network is locally asymptotically stable.

Proof. The eigenvalues of M-matrices always have a positive real part (Plemmons, 1977). Therefore, if —J(x) is an M-matrix then J(x) have
eigenvalues with negative real part. As a consequence in systems with Jacobian being negative M-matrix if steady state exists, then it is
unique and locally asymptotically stable.o

Theorem 3. Consider single-substrate-single-product metabolic network with general stoichiometry. Assume reaction rates are monotonic and
network has tree topology. Then the steady state, if it exists, is unique and locally asymptotically stable.

Proof. According to Lemma 1 and Lemma 2 to prove that in SSSP metabolic network with monotonic reaction rates, general stoichiometry
and tree topology the steady state, if it exist, is always unique and locally asymptotically stable we only need to prove that —J(x) is always
an M-matrix. We first show that this theorem holds for linear networks, then for branched networks and finally for networks with tree
topology.

4.1. Linear networks

A general representation of linear metabolic network with single-substrate-single-product reactions is of the form

DX Xy & X, (18)
Stoichiometric coefficients in (18) are omitted for the illustration purpose.
The Jacobian matrix for linear SSSP networks with general stoichiometry is tridiagonal with negative diagonal entries and positive off-
diagonal entries:

—512821 512822
522821 —522822—523832 523833

Jx) = 533832 . (19)
- - Sm—1.mE8mm

Smm8mm—1  —Smm8mm —Smm+18m+1,m

We prove by induction that the leading principal minor of the Jacobian matrix (19) is of the form
k
fe=(=D"TT sij18i 14 (20)
i=1

The first leading principal minor of the Jacobian matrix (19) is f; = —s1285 1. The second leading principal minor is f, = 51252382 1832-
Both f; and f, satisfy the Eq. (20). Let us assume that the Eq. (20) is true and find the next leading principal minor f;_ ;. Using the
recursion equation for a determinant of a tridiagonal matrix (EI-Mikkawy, 2004) we get
Sr1 = (=Skp 1184 11— Sk 1k+28k+ 24+ 1) k

=Sk 1k+18k-+ 1kSkk+18k+1k+ 1 k-1

k
k
= (= Skt 1k+18k+1k+1 — Skt 1k+28k+ 2k + D= D T Siir18is1
i=1

k=1
k—1
=S4 1k+18k+ 14Skk+18k+1k+1(— D7 TT Siit18is 1,
i=1
X k
= —Sks1k+28k+2k+1(—= D" TI Siiv18is1,
i1
K1 k+1
=D 1T Sii+18i+1.4r
i=1

which is according to Eq. (20).

From the Eq. (20) we conclude that all leading principal minors of the matrix (19) alternate in sign starting from negative. Combining
this with positive off-diagonal entries results in that the Jacobian matrix (18) is negative M-matrix. According to Lemma 1 and Lemma 2
this means that if the steady state of a general linear metabolic network (18) exists then it is always unique and locally asymptotically
stable.

4.2. Branched networks

A general representation of branched metabolic network with single-substrate-single-product reactions is of the form

Vi \7] Vp Vpr1 Vy Vi1
—)X](—),,,(—)Xp(—),,,(—)XyE)

Xp2h Ao e @1
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Without loss of generality we assume that there is a linear chain of y metabolites, in which branching occurs at the metabolite X,. We
numerate all reactions sequentially in the first branch from 1 to y, and then continue numerating in the second branch from y+1 to m.
Outflow reactions (m+1 and m+2) we numerate as the last ones. In Appendix C in Supplementary materials we prove that the corre-
sponding Jacobian matrix for the network (21) is negative M-matrix. Therefore, in metabolic network (21) if the steady state exists it is
always unique and locally asymptotically stable steady state.

4.3. Networks with tree topology

Networks with tree topology consist of combinations of linear and branched networks, and do not contain cycles. In Appendix D in
Supplementary materials we prove that the Jacobian matrix for metabolic network with tree topology is an M-matrix. Therefore in SSSP
metabolic networks with general stoichiometry and tree topology if the steady state exists it is always unique and locally asymptotically
stable.o

Example 4.

In this example we apply Theorem 3 to mevalonate pathway. We assume all reaction rates in this pathway to be monotonic. Since
Mevalonate pathway is linear and SSSP then irrespectively of specific form of reaction rates and reaction parameters the steady state, if it
exists, is unique and locally asymptotically stable.

4.4. Cyclic networks

In contrast to networks with tree topology cyclic networks do not always have unique and locally asymptotically stable steady state. For
simplicity we show the condition for the uniqueness of a steady state (if it exists) and local asymptotic stability for cyclic network with
irreversible reactions. An example of such network is Calvin cycle (Eq. (22)). In Calvin cycle one molecule of ribulose 5-phosphate breaks
into two molecules of 3-phosphoglycerate, one of which is used in Calvin cycle, and the other one is used in other metabolic pathways.

YR 1,5 - bP%2 PG
PG-251,3 - bPGXHG -3 - PSR- 5 - PSR —_1,5—-DbP

v7

PG . (22)

Here, R-1,5-bP is ribulose 1,5-biphosphate, PG is 3-phosphoglycerate, 1,3-bPG is 1,3-biphoshoglycerate, G-3-P is glyceraldehyde-3-
phosphate, R-5-P is ribulose 5-phosphate.
A general representation of cyclic metabolic network with single-substrate-single-product irreversible reactions is of the form

Vv V. v v, \Z 1
DX X X5 X,

Vin+2

Xp—>. 23)

Here the last metabolite in a cycle X, is transformed into the first metabolite X; and some metabolite X, outflows from the system.
The Jacobian matrix in this case is the following:

—512821 S1tm+18m+1,m
522821
—Sk—1k8kk-1
sk,kgk,k— 1 —Skk+18k+ 1.k _sk,m+2gm+2,k 24
Jxy= Sk+1.k+18k+1.k —Sk+1,k+28k+2k+1 - @Y
Skt 1k+28k+2.k+1
_sm—l‘mgm,m—1

—Smm8m,m—1 —Smm+18m+1,m
The Jacobian matrix (24) is lower triangular except for the positive entry sy ,418m,, 1., in the upper right corner of the matrix.

Theorem 4. Consider single-substrate-single-product cyclic metabolic network (23) with general stoichiometry. Assume reactions are irre-
versible and reaction rates are monotonic. Then the steady state, if it exists, is unique and locally asymptotically stable if

m+1 m
(Skk+18k+1k+Skm+28m24) [ Si—1i>Stmi18ks1k [ Side (25)
i—2izk i—2

Here the term g, 1, = dv1/0X, corresponds to the derivative of the reaction rate of reaction k with respect to the concentration of the
metabolite X;. The term g, 5y = 0V 2/0x, corresponds to the derivative of the reaction rate of the outflow reaction with respect to the
metabolite Xj. The stoichiometric coefficient sy, 1 corresponds to the number of molecules of the metabolite X, which are used in
the reaction k: sy 4 1Xx—>Sk + 1.k+1Xk+1. The stoichiometric coefficient sy ,, . , corresponds to the number of molecules of the metabolite X,
which outflow as the result of the reaction m+2: sy, ,Xy—. The stoichiometric coefficient s; ;1 corresponds to the number of
molecules of the metabolite X; which are produced in the reaction m+1 that closes the cycle: s;m1Xm—>51,m+1X1. The term [T ,si_1;
corresponds to the product of stoichiometric coefficients that appear on the diagonal of the Jacobian matrix and correspond to the
consumption of reaction substrates. The term []"_,s;; corresponds to the product of the stoichiometric coefficients that appear on the off-
diagonal entries of the Jacobian matrix and correspond to creation of reaction products.

We give the proof of Theorem 4 in Appendix E in Supplementary materials.
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Example 5.

In this example we apply Theorem 4 to Calvin cycle (Eq. (22)). The Jacobian matrix in this case is
J(x)=5SDv(x)

0 0 0 0 o0
1 -1 0 0 O 1 O & 0 0 0 0
02 -1 0 0 0 -1 0 g, 0 0 O
=l0 0 1 -1 0 0 O 0 0 g3 0 O
00 0 1 -1 0 o0 0 0 0 g4 O
00 0 0 1 -1 0 0 0 0 0 gs
0 g, 0 0 O
—821 0 0 0 86,5
281 —832-82 0 0 0
= 0 832 —843 0 0
0 0 843 854 0
0 0 0 854 —865

In Calvin cycle there are m =5 metabolites, and second metabolite outflows from the pathway, that is k = 2. According to Eq. (25) the
condition for Calvin cycle to have unique and locally asymptotically stable steady state is (g3, +&72) > 23, Which finally gives

872 > g3, Or alternatively 2702) > 220),

Example 6.
Consider the following cyclic network:

v A%
X1 -5X,

2X, 2 X3 X, (26)
Vs
X 3—>.

The stoichiometric matrix for this network is

1 -1 0 1 0
s=lo 1 -2 0o -1 27)
00 1 -1 0

The inflow reaction rate v; is constant. We assume that the other reaction rates obey Michaelis—-Menten kinetics:

_ Vmax iXi ; _
v,_—XH_Ki ,1=2,3,4,5. 28)

The locally asymptotically stable steady state for this system and the vector field in the phase space of metabolite concentrations are
depicted in Fig. 2.

X] 0

Fig. 2. Locally asymptotically stable steady state (red point) and vector field (blue arrows) for the cyclic metabolic network (24). Parameters are presented in Appendix A in
Supplementary materials.
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Fig. 3. Dynamics of metabolite concentrations of the metabolic network (27) near stable (left plot) and unstable (right plot) steady states. Initial conditions are: {0.0, 0.0, 0.0} (left
plot) and {0.3, 0.3, 0.3} (right plot). The steady states are: {0.0162,0.0015,0.006} and {0.1728, 0.0369, 0.1592}.

Example 7.

Now we consider the cycle with an unstable steady state. Consider the following cyclic network

L' SIL' SRR, '
X3-245X,
X2 (29)

The stoichiometric matrix for this network is

1 -1 0 1 0
s=[o 1 -1 0o -1 (30)
00 2 -1 0

The inflow reaction rate v; is constant. The rest of the reaction rates are assumed to be of Michaelis-Menten type of kinetics (Sup-
plementary Appendix A). In contrast to the previous example, there are two steady states in this metabolic network (Fig. 3). The first
steady state is locally asymptotically stable and the second one is unstable.

Example 8.

Interestingly, if for the network (29) we assume mass action kinetics, i.e. v, = kX1, V3 =KkyXa, V4=KksX3, Vs =KkyX,, then in this case
the steady state is unique: x1* = (v1(ka +Kk4))/(k1 (ks —Kk2)), X2* = v1 /(ka— ko), x3* = 2k, /(k3(ks — k2)). The steady state is stable if k4 > k;.

To summarize, in single-substrate-single-product metabolic networks with general stoichiometry and with monotonic reaction rates
the steady state, if it exists, is unique and locally asymptotically stable in case there is no cycle in the network. Moreover, for cyclic
networks multiple steady states are possible (both stable and unstable). The inequality (25) is a sufficient condition for uniqueness and
local asymptotic stability of a steady state for cyclic networks with irreversible reactions.

5. Multiple-substrates—-multiple-product metabolic networks
5.1. General considerations

In multiple-substrates—-multiple-product (MSMP) metabolic networks the reaction complexes may contain more than one metabolite.
According to Theorem 1 steady states in MSMP metabolic networks may form manifolds. The question is under which conditions
manifolds of steady states are locally asymptotically stable? As in the case of single-substrate-single-product metabolic networks we will
consider stability properties of manifolds of steady states for the cases of simple and general stoichiometry.

5.2. Simple stoichiometry

We first show local asymptotically stability of manifolds of steady states for linear and branched MSMP networks with irreversible
reactions. Then we show that there is direct relationship between SSSP and MSMP networks with reversible reactions in case in the MSMP
network every metabolite participates in only one reaction, and not in other reaction complexes. That is linkage classes do not share
metabolites, e.g. metabolites X5 and X, in metabolic network (14).

Theorem 5. Consider multiple-substrate-multiple-product metabolic network. Assume the stoichiometry is simple. Assume all reactions are
irreversible and reaction rates are monotonic. Assume also that the network has tree topology and every metabolite participates in only one
reaction complex. Then the manifold of steady states of the network is locally asymptotically stable.

Proof. We first show that this theorem holds for metabolic networks with linear topology, then for networks with branched topology and
finally for tree topology.c

5.2.1. Linear networks
A general representation of linear metabolic network with multiple-substrate-multiple-product reactions is of the form

BN N R NN (31)

Here C; = s;; X, represent different reaction complexes.
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The Jacobian matrix is in this case is a block lower triangular matrix.

Bi1
Joo= | P (32)
Bgg-1 Bgg
The diagonal block B;; that corresponds to reaction j with d substrates is
—8&ji —&ji+1 -+ —&ji+d
B, — _:gj,i _g]:’,i+1 _g;:'.i+d (33)
—&i —&i+1 - —&jit+d

All the entries in diagonal block B;; are negative, moreover the rows in every diagonal block are the same, resulting in rank(B;;) = 1.
Hence, the only nonzero eigenvalue in each diagonal block B;; is equal to the sum of its diagonal entries, i.e. to the trace of the block,
A1 =Tr(Bj)). Since the trace of each diagonal block is always negative, the only nonzero eigenvalue 4, of B;; is negative. The last diagonal
blocks correspond to outflow reactions and consist of only one nonzero negative entry in each block, so the corresponding eigenvalues are
all negative. The eigenvalue spectrum of the lower block triangular matrix consists of the union of eigenvalues of each diagonal block. As a
result, the spectrum of the Jacobian matrix in this case consists of negative and zero eigenvalues.

In this case the number of zero eigenvalues will correspond to the dimension of manifold of steady states. The rest of the eigenvalues
are real and negative, so manifolds of steady states for linear networks are locally asymptotically stable.

5.2.2. Branched networks
A general representation of branched metabolic network with multiple-substrate-multiple-product reactions is of the form

v v v Vo1 v Vi1
1 Cl 2 . P Cp P+ . y Cy m+
Vy+l o Vm ~ Vms2
Cp—..—(C—. (34)

The Jacobian matrix for branched networks with multiple-substrates-multiple-products, with simple stoichiometry and irreversible
reactions has lower block triangular structure, as in the case for linear networks (32). The only different diagonal block B, is the one that
corresponds to the reaction complex C, at the branching point. Suppose there are d metabolites in the branching complex Cp, and the
branching reactions are p+1 and y+1. Then the general structure of the corresponding d x d diagonal block is the following:

_gp+1,i_gy+1,i _gp+1,i+1_gy+1,i+1 _gp+1,i+d_gy+1,i+d
7gp+1,i7gy+1,i 7gp+1,i+17gy+1,i+1 7gp+1,i+d7gy+1,i+d

Bpp = : : . : (35)
*gp+1j7gy+1,i 7gp+1.i+17gy+1j+1 7gp+1‘i+d7gy+1‘i+d

As in the case of other diagonal blocks all entries of By, are negative and all rows are equal. So the only nonzero eigenvalue of this block
is negative. Overall, as in the case of linear networks (31) the number of zero eigenvalues will correspond to the dimension of manifold of
steady states and the rest of eigenvalues are negative. Therefore, manifolds of steady states in case of branched networks (34) are locally
asymptotically stable.

5.2.3. Networks with tree topology

Metabolic networks with tree topology also have the Jacobian matrix with block lower triangular structure (32). Diagonal blocks
corresponds have the same structure as in the case of linear networks (33) (for complexes that are not at the branching point) and
branched networks (35) (for complexes that are the branching point). Therefore, manifolds of steady states in case of metabolic networks
with tree graph topology are locally asymptotically stable.o

5.2.4. Coordinate transformations in MSMP networks with simple stoichiometry
Now we drop the assumption that reactions are irreversible and we show that in some cases with an appropriate coordinate trans-
formation manifolds of steady states may be considered with respect to stability as a single steady state in the space of reaction complexes.

Theorem 6. Consider multiple-substrate-multiple-product metabolic network. Assume the stoichiometry is simple. Assume reaction rates are
monotonic. Assume every metabolite participates in only one reaction complex. Then the manifold of steady states is locally asymptotically
stable.

Proof. In case multiple metabolites participate in one reaction complex only then the differential equations that describe their dynamics
are the same. In this case it is possible to make coordinate transformation and reduce this system. Suppose metabolites X1, ..., X} parti-
cipate in the same reaction complex and do not participate in other reaction complexes. Then X; = ... = ;. Then there is a manifold of
steady state of dimension k— 1. We make the following coordinate transformation:
Z1 =X
Zy=X,—% =0

. (36)
Zk = xk —5{1 =0.

Suppose in metabolic network with multiple-substrate-multiple-product reactions in every complex with more than one metabolite
metabolites do not participate in other reaction complexes. Then we can apply the above coordinate transformation in such a way that the
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network reduces to a metabolic network with single-substrate-single-product reactions. The Jacobian matrix for such network is a
negative M-matrix, so all its eigenvalues have negative real part. This implies local asymptotic stability of manifold of steady states for
such network.

Note that Theorem 6 may be applied to networks with arbitrary topology.c

5.2.5. Numerical simulations of local stability

It is also possible that metabolites from the same reaction complex participate in other reactions or, in other words, different linkage
classes share some metabolites. In this case the coordinate transformation above does not reduce the system with respect to shared
metabolites. For such cases we studied local stability properties of manifolds of steady states using the structural kinetic modeling
method, introduced by Steuer et al. (2006). In the structural kinetic modeling normalized parameters are used instead of standard
parameters, i.e. Vmax OF Ky, Specifically, in the structural kinetic modeling a change of variables is performed in order to simplify the
Jacobian matrix. Assuming that a positive steady state x* exists, we can redefine the system (1) in the following way:

x;(t) Vi(X)
xp(ty Vi(x*)

Vi(X*)

X (37)

yi(t)= Ajj =sjj and p;(x) =

Now the system of Eq. (1) can be rewritten as
y=Auy) (38)
The Jacobian of the normalized system (36) evaluated at y* =1 is

=A% e (39)
AT

Note that J, can be easily transformed into the original Jacobian. The matrix A consists of stoichiometric matrix S, vector of steady state
concentrations y*, and the steady state fluxes v(y*). Steuer et al. (2006) proved that for metabolic reactions with no inhibition or coop-
erative behavior 9;‘ is defined in the range [0, 1]. This well-defined range allows for an effective random sampling of parameters of
Jacobian matrix in order to investigate dynamical properties of a given metabolic network.

We systematically investigated random networks of 10-100 metabolites in total with one or two metabolites in each reaction complex.
We constructed the structure of Jacobian matrix for every such network. For every Jacobian matrix we evaluated its eigenvalues for 10°
realizations of random sampling of parameters. For each of these realizations we counted the number of eigenvalues with strictly negative
real part, positive real part, with imaginary part only and the number of zero eigenvalues. It turned out that for all the network and
realizations of the Jacobian matrices we considered no eigenvalues were found with positive real part and eigenvalues with only ima-
ginary part. The number of zero eigenvalues was always equal to the predicted dimension of steady states manifold from the rank
deficiency of the stoichiometric matrix. The rest of eigenvalues had negative real part. Based on this result we make the following
conjecture.

Conjecture 1. Consider multiple-substrate-multiple-product metabolic network. Assume the stoichiometry is simple and reaction rates are
monotonic. Then the manifold of steady states is locally asymptotically stable.

To summarize, in multiple-substrate-multiple-product metabolic networks with simple stoichiometry and with monotonic reaction
rates steady states form locally asymptotically stable manifolds of steady states in case every metabolite participates in only one reaction
complex. We conjectured local asymptotically stability of manifolds of steady states.

5.3. General stoichiometry

In multiple-substrate-multiple-products metabolic networks steady states may form manifolds, according to the Theorem 1. In this
section we investigate stability properties of steady states for linear and branched networks with irreversible reactions.

5.3.1. Linear networks
The Jacobian as in the case of MSMP with simple stoichiometry (32) is also a block lower triangular matrix.
The diagonal block B;; that corresponds to the reaction j with d substrates is different from (33) and includes stoichiometric coefficients

—Sij8ji —Sij&ji+1 -+ TSij8ji+d
—=Si+18ji —Si+1j8ji+1 -+ —Si+1j8ji+d
Bjj = . . . . (40)
—Si+di&ji ~Si+di&ji+1 -+ TSi+dj8ji+d

All the entries in diagonal block B;; are negative, moreover rank(B;;) =1 for all j. Hence, the only nonzero eigenvalue in each diagonal
block B;; is equal to the sum of its diagonal entries, i.e. to the trace of the block, A4; = Tr(B;;). Since the trace of each diagonal block is always
negative, the only nonzero eigenvalue A; of B;; is negative. So, as in the case of linear networks (31) the eigenvalue spectrum of the
Jacobian matrix in this case consists of negative and zero eigenvalues, where the number of zero eigenvalues will correspond to the
dimension of manifold of steady states. The rest of the eigenvalues are real and negative, so manifolds of steady states for linear networks
are locally asymptotically stable.

5.3.2. Branched networks

The Jacobian matrix for branched networks with multiple-substrates-multiple-products irreversible reactions has a lower block tri-
angular structure as in the case of linear networks (32). The diagonal block B, that corresponds to the reaction complex C, at the
branching point has a different structure than other diagonal blocks. Suppose there are d metabolites in the branching complex C, and the
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branching reactions are p+1 and y+1 then the general structure of the corresponding d x d diagonal block is the following:
—Sip+18p+1,i—Siy+18y+1.i —Sip+18p+1i+d ~Siy+18y+1i+d
Bpp= ‘ ‘ : 41
—Sitdp+18p+1,i—Si+dy+18y+1,i -+ ~Si+dp+18p+1i+d —Siy+18y+1i+d

The eigenvalue spectrum of this block consist of d—2 zero eigenvalues and two nonzero eigenvalues

1
h=5 [Tr(Bp,p) —\/TrBpp)* — b,,,p]

1
Dy = > {Tr(Bp’p) +1/Tr(Byp)* — bp,p] (42)

Here Tr(B,;) is the trace of the diagonal block B, ,. The term b, consists of sum of products of entries of B, . If 11 <0 and 4, < 0 then
branched metabolic network has a set of steady states in a form of locally asymptotically stable manifold. The number of zero eigenvalues

corresponds to the dimension of the manifold. The eigenvalue 4, =%{Tr(Bp.p)+\/Tr(Bp’p)2 —bp’p} has positive real part if and only if by
< 0. In this case the set of steady states is locally repelling manifold. We did not obtain a general expression for the b,, term for an
arbitrary size of a block. In metabolic networks the number of metabolites in reaction complexes does not exceed three. By computing

eigenvalues explicitly we obtained the expression of b,, for the case when there are two, d =2, and three, d =3, metabolites in the
branching complex.

If d=2 then
B —Sip+18p+1.i—Siy+18y+1.i —Sip+18p+1i+1 —Siy+18y+1i+1 (43)
PP —Sit1p+18p+1i —Si+1y+18y+1i  ~Si+1p+18p+1i+1 —Si+1y+18y+1i+1
In this case
b Sip+1 Siy+1 ||8p+1i 8p+ii+1
PP Si1pe1 Sivty+1||8y+1i &y+titt
=(Sip+1Si+1y+1—Si+1p+1Siy+1)Ep+18y+1i+1 —8&y+1i8p+1,i+1) (44)
If d=3 then
—Sip+18p+1i —Siy+18y+1.i —Sip+18p+1i+1 ~Siy+18y+1,i+1 —Sip+18p+1i+2 ~Siy+18y+1,i+2
Bpp=| —Si+1p+18p+1i—Si+1y+18y+1i  TSi+1p+18p+1i+1 ~Si+1y+18y+1Liv1 T Si+1p+18p+1i+2 TSi+1y+18y+1i+2 (45)
—Sit2p+18p+1i—Si+2y+18y+1i  —Si+2p+18p+1ir1 —Si+2y+18y+1i+1  ~Si+2p+18p+1i+2 —Si+2y+18y+1i+2
In this case
b Sip+1 Siy+1 8p+1i 8Ep+1i+i Sip+1 Siy+1 8p+1i Ep+1i+2
PP sivipet Sivty+1||8y+1i &y+tit1 | |Siv2zp+1 Sivzy+1||8y+1i Sy+iit2
Sit1p+1 Si+1y+1||8p+1i+1 Ep+1i+2 (46)
Siv2p+1 Sit2y+1||8y+1i+1 8Sy+tit2

It is possible that eigenvalues 4;, (42) have imaginary parts in the case b,, > Tr(Bp,p)2.
We summarize the results above in the following theorem.

Theorem 7. Consider multiple-substrate-multiple-product metabolic network. Assume the stoichiometry is general. Assume reactions are
irreversible and reaction rates are monotonic. Assume the network has tree topology with each metabolite participating in one complex. Then the
manifold of steady states is locally asymptotically stable if by, <O.

Proof. Metabolic networks with tree topology and single linkage class also have lower block triangular structure of the Jacobian matrix
(32). Diagonal blocks have the same structure as in the case of linear networks (33) (for complexes that are not at the branching point) or
branched networks (41) (for complexes that are the branching point). In the second case reaction complexes contribute to instability.
Therefore, manifolds of steady states in this case are locally asymptotically stable if the condition for eigenvalues of the diagonal block that
corresponds to the branching point is satisfied.o

Example 9.

Consider the following branched network:
N'S
2X1~2 X5 + X3~ X4

Xy + X325 X 2 (47)
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The stoichiometric matrix for this network is

1 -2 0 0 0 O
1 -1 -1 0 0
1 -1 -1 0 o0 (48)
0 1 0 -1 0
0o 0o 1 0 -1

o O O O

We assume that the reaction rate v; is constant. Reaction rates v,(x), v3(X), v4(x) obey convenience kinetics (Liebermeister and Klipp,
2006), and reaction rates vs(x), ve(x) obey Michaelis—-Menten kinetics (Supplementary Appendix A). The manifold of steady states for this
system and vector field in the phase space of metabolite concentrations x;, X,, X3 are depicted in Fig. 4. The manifold of steady states
(Fig. 4) is locally asymptotically stable.

Example 10.

Consider the following branched network:

Vi

—X1
vy v3 Vs
X1—2X5 + X3—X4—>
X2+2X3£>X5£> (49)

The stoichiometric matrix for this network is

1 -1 0 0 0 O
1 -2 -1 0 0
1 -1 -2 0 0 (50)
0 1 0 -1 0
o 0 1 0 -1

o O O o

We assume that the reaction rate v, is constant. Reaction rates v3(x), v4(x) obey convenience kinetics (Liebermeister and Klipp, 2006),
and reaction rates v,(x), vs(X), Vg(X) obey Michaelis-Menten kinetics (Supplementary Appendix A). The steady state in this case may
become unstable (Fig. 5).

5.3.3. Cyclic networks
A general representation of cyclic metabolic network with multiple-substrate-multiple-product reactions is of the form

v vy Va_2 ~ Vi1
—C1—=Cy.. =S Cn—C,

Vn

Cn— 51

Structural kinetic modeling (Steuer et al., 2006) demonstrates that stability is also not guaranteed under all conditions for metabolic
cycles with multiple-substrate-multiple-product reactions. Conditions for stability of steady states in this case are to be found.

X2

0.0

Fig. 4. Manifold of steady states (red line) and the vector field (blue arrows) for the branched metabolic network (45). The rate equations and parameters are presented in
Appendix A in Supplementary materials. For the network (45) the steady state x3* is a function of the steady state x,*: x3* :”;‘;771
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Fig. 5. Dynamics of metabolite concentrations of the metabolic network (47). Concentrations of metabolites x;, X3, X4, Xs quickly reach the steady state. Concentration of
metabolite x, increases to infinity with time.

Table 1
Steady states in different types of metabolic networks.

Network type Simple stoichiometry General stoichiometry
Single-substrate-single- If a steady state exists it is always unique and globally asymptotically If a steady state exists it is always unique and locally asymptotically
product (SSSP) stable (Theorem 2). in case there are no cycles in the network (tree topology) (Theorem

3). In case of cyclic network with irreversible reactions condition is
provided for uniqueness and local asymptotic stability of a steady
state (Theorem 4).
Multiple-substrate-multi-  Steady states are in form of manifolds (Theorem 1). Manifolds of Steady states are in form of manifolds (Theorem 1). Manifolds are
ple-product (MSMP) steady states are locally asymptotically stable in the case every always locally asymptotically stable only in case of linear networks
metabolite participates in only one reaction complex (Theorem 6).  with irreversible reactions. For other topologies extra conditions are
We conjecture local asymptotic stability of manifolds of steady states required for local stability (Theorem 7).
for any topology (Conjecture 1).

6. Discussion

We investigated steady states and their stability for various types of metabolic networks with monotonic reaction kinetics. Com-
plementary to previous works, which mostly were concerned with specific stoichiometry, topology or kinetics, we made an attempt to
characterize properties of steady for general types of metabolic networks. We classified metabolic networks based on stoichiometry
(simple and general) and the number of metabolites that participate in each reaction complex (single or multiple). The results are
summarized in Table 1. Our results are valid irrespectively of specific kinetic reaction rates, provided that they are monotonic, and
irrespectively of specific values of parameters.

Metabolic networks with simple stoichiometry have either unique globally asymptotically stable steady state or asymptotically stable
manifold of steady states. This is quite interesting result because most of metabolic networks have simple stoichiometry (Palsson, 2011).
Therefore, in most metabolic pathways either steady states or manifolds of steady states are locally or globally asymptotically stable. This
result is in agreement with latest insights from chemical reaction network theory (Shinar and Feinberg, 2013).

Moreover, local stability of steady states or manifolds of steady states is provided without any regulation. The role of metabolic reg-
ulation is to ensure biologically desirable location of a steady state, while simple stoichiometry and monotonic kinetics guarantee con-
vergence of state space to this steady state or to manifold of steady states. The presence of regulation might lead to instability of steady
states (Savageau, 1975; Heinrich et al., 1977). Moreover, in some cases there is a trade-off between the strength of regulation and stability
of a steady state (Savageau, 1975).

For metabolic networks with general stoichiometry steady states are not always stable. In particular, in single-substrate-single-product
metabolic networks steady state is unique and locally asymptotically stable if there is no cycle in the network. In contrast to metabolic
networks with single-substrate-single-product reactions and simple stoichiometry, in case of general stoichiometry in cyclic networks
multiple separated steady states are possible and stability of these steady states is not guaranteed under all conditions. For metabolic
networks with multiple-substrate-multiple-product reactions asymptotic stability of manifolds of steady states is guaranteed only for
linear networks with irreversible reactions.

As a conclusion, stoichiometry plays a very important role in stability of steady states in metabolic networks. In metabolic networks with multiple-
substrate-multiple-product reactions steady states may form manifolds of steady states. Manifolds of steady states seem to be not biologically
desirable. Small deviations from a steady state, due to external causes, may lead to a different position on the manifold of steady states, with
physiologically undesirable values of metabolite concentrations. Metabolic networks can avoid the appearance of manifolds of steady states by
participations of metabolites in different linkage classes, presence of single-substrate-single-product reactions and by means of regulation that drives
a steady state to a desired position on a manifold. Inspecting the structure of metabolic networks in cells indeed indicates that most of them should
have zero dimensional manifolds of steady states. That is metabolic networks have either a unique steady state or a set of separated steady states.
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