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Toxicity of aggregation-prone proteins is thought to play an im-
portant role in aging and age-related neurological diseases like
Parkinson and Alzheimer’s diseases. Here, we identify tryptophan
2,3-dioxygenase (tdo-2), the first enzyme in the kynurenine path-
way of tryptophan degradation, as a metabolic regulator of age-
related α-synuclein toxicity in a Caenorhabditis elegans model.
Depletion of tdo-2 also suppresses toxicity of other heterologous
aggregation-prone proteins, including amyloid-β and polyglut-
amine proteins, and endogenous metastable proteins that are
sensors of normal protein homeostasis. This finding suggests that
tdo-2 functions as a general regulator of protein homeostasis.
Analysis of metabolite levels in C. elegans strains with mutations
in enzymes that act downstream of tdo-2 indicates that this sup-
pression of toxicity is independent of downstreammetabolites in the
kynurenine pathway. Depletion of tdo-2 increases tryptophan levels,
and feeding worms with extra L-tryptophan also suppresses toxicity,
suggesting that tdo-2 regulates proteotoxicity through trypto-
phan. Depletion of tdo-2 extends lifespan in these worms. To-
gether, these results implicate tdo-2 as a metabolic switch of
age-related protein homeostasis and lifespan. With TDO and
Indoleamine 2,3-dioxygenase as evolutionarily conserved human
orthologs of TDO-2, intervening with tryptophan metabolism
may offer avenues to reducing proteotoxicity in aging and age-
related diseases.

Huntington | longevity

Maintaining a stable proteome is critical for an organism’s
survival, and cells have evolved several mechanisms to cope

with misfolded and aggregation-prone proteins (1). Conditions
such as environmental stress or aging increase protein damage,
and at the same time, protein quality control systems are thought
to be compromised, resulting over time in the accumulation of
toxic aggregation-prone proteins (2). Toxicity of such aggrega-
tion-prone proteins is thought to play an important role in aging
and age-related diseases, such as Parkinson, Alzheimer’s, and
Huntington disease (3–5). Although aging seems to be the greatest
risk factor for developing neurodegenerative diseases, little is
known about the metabolic and molecular processes that drive
the toxicity of aggregation-prone proteins during aging.
Studies in the nematode Caenorhabditis elegans have identified

evolutionarily conserved genetic pathways that regulate protein ho-
meostasis as well as aging, including the insulin/insulin-like growth
factor 1 (IGF-1) signaling (IIS), hypoxic response, and dietary re-
striction pathways (6–13).
Here, we describe the identification of the tryptophan-con-

verting enzyme tryptophan 2,3-dioxygenase (TDO-2) as a meta-
bolic regulator of age-related protein toxicity and lifespan in
C. elegans.

Results
Knockdown of tdo-2 Suppresses Toxicity of α-Synuclein in C. elegans.
α-Synuclein is an aggregation-prone protein that is involved in
Parkinson disease and other synucleinopathies (14, 15). We have
previously identified 80 genes that modify α-synuclein inclusion
formation in a C. elegans model (16).
Toxicity of α-synuclein in this model can be measured by a

progressive decline in the worms’ motility during aging (17). To
search for modifiers of α-synuclein toxicity, we measured the
motility of animals in which each of the 80 genes was individually
knocked down by RNAi (Dataset S1). We identified 10 genes that
increased toxicity and 3 genes that decreased toxicity on knock-
down (Fig. 1A and Dataset S1). Our data are in line with other
studies showing that the presence of inclusions does not neces-
sarily correlate with toxicity (18). The most potent suppressor of
toxicity identified in this screen was C28H8.11 (NCBI accession
number NM_065883.3), which resulted in a 2.5-fold increase in
motility in day 4 adults (Fig. 1A). We named this gene tdo-2
based on its homology to human TDO (NCBI accession number
NP_005642.1) (Fig. S1A). tdo-2 encodes TDO-2, which catalyzes
the first and rate-limiting step in the kynurenine pathway of
tryptophan degradation (Fig. 1B). Analysis of a transcriptional
reporter strain expressing GFP under the control of the tdo-2
promoter suggests that tdo-2 is mainly expressed in body wall
muscle cells and the hypodermis and therefore, that it may
regulate proteotoxicity through these tissues (Fig. S1B) (19).
Knockdown of tdo-2 suppressed α-synuclein toxicity from day 1

of adulthood on without affecting expression levels of α-synuclein
(Fig. 1C and Fig. S1 C and D). A decline in muscle function is
one of the first features that can be observed during aging in
many organisms (20–23), and decreased protein quality control
or the expression of aggregation-prone proteins can accelerate
this age-dependent decline in muscle function (6, 24). We, there-
fore, tested whether knockdown of tdo-2 would suppress the de-
cline in motility during aging of control animals as well. Indeed,
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from day 4 on, knockdown of tdo-2 suppressed the decline in
motility in control animals expressing YFP (Fig. 1C).
To exclude that knockdown of tdo-2 regulates α-synuclein

toxicity by interfering with a developmental program, we fed
worms on tdo-2 RNAi starting from the last larval stage (L4)
as well as day 1 of adulthood. In both cases, we observed that
knockdown of tdo-2 increased motility of animals expressing
α-synuclein by 1.7- and 1.6-fold on day 4 of adulthood compared
with an increase of 1.2- and 1.4-fold in motility of animals ex-
pressing YFP only (Fig. 1D, Fig. S1E, and Table S1).
Together, our data suggest that depletion of tdo-2 suppresses

α-synuclein toxicity and the age-related decline of motility in
general and that this suppression is independent of its role
in development.

Effect Upstream of tdo-2 Regulates Toxicity of α-Synuclein. To ex-
plore whether modulation of α-synuclein toxicity by tdo-2 depends
on metabolites downstream of tdo-2, we inactivated enzymes
downstream in the pathway by RNAi and by crossing α-synuclein
worms with mutant strains (Fig. 2A). We performed liquid
chromatography–tandem MS (LC-MS/MS) to measure levels of
kynurenines (25).
Deletions of kmo-1 encoding kynurenine 3-monooxygenase,

flu-2 encoding kynureninase, and haao-1 encoding 3-hydrox-
yanthranilic acid oxygenase, blocked the kynurenine pathway,

which was measured by increases in kynurenine, anthranilic acid,
3-hydroxykynurenine, and 3-hydroxyanthranilic acid (Fig. 2E
and Table S2). Deletions in kmo-1 and haao-1 did not affect the
motility of α-synuclein worms (Fig. 2B and Table S1), nor did
a deletion in afmd-1 encoding formamidase (Fig. S2A). Deletion
or RNAi inactivation of flu-2 increased the motility of α-synu-
clein animals by 1.3-fold (Fig. 2 C and D and Table S1). When
we then depleted tdo-2 in afmd-1, kmo-1, and haao-1 mutant
animals, we observed a strong increase in motility comparable
with the increase observed in WT α-synuclein animals on tdo-2
RNAi (Fig. 2B, Fig. S2A, and Table S1). Similarly, depletion of
tdo-2 increased motility in flu-2 mutant animals from 1.3- up to
1.8-fold (Fig. 2C and Table S1). Knockdown of tdo-2 almost fully
blocked the kynurenine pathway in all mutants, increasing the
tryptophan levels by more than fivefold (Fig. 2E and Table S2).
This finding showed that, in WT animals, at least 80% of tryp-
tophan was degraded by TDO-2. Knockdown of tdo-2 reduced
the levels of all other metabolites close to background levels
(Fig. 2E and Table S2). Kynurenic acid (KA) was detected only
in kmo-1 and flu-2 mutant animals, and its level was unaltered by
knockdown of tdo-2 (Fig. 2F). Moreover, supplementing the
worms’ feed with kynurenine did not affect α-synuclein toxicity,
and when we depleted tdo-2 in animals grown on kynurenine-
supplemented plates, we still observed the strong suppression
of α-synuclein toxicity (Fig. S2B and Table S1). Together, these
data show that variations in the levels of kynurenine, anthra-
nilic acid, 3-hydroxykynurenine, 3-hydroxyanthranilic acid, or
KA could not account for the changes in α-synuclein toxicity.

Suppression of α-Synuclein Toxicity by tdo-2 Can Be Independent of
Serotonin Synthesis. The only other route known to use tryptophan
as a substrate is the pathway synthesizing the neurotransmitter
serotonin. To test whether serotonin is required for suppressing
α-synuclein toxicity after tdo-2 depletion, we deleted tph-1 en-
coding tryptophan hydroxylase, which is necessary for serotonin
synthesis (Fig. 2A), in α-synuclein animals. Previous studies
reported that no detectable levels of serotonin were measured in
tph-1 mutant animals (26). Although deletion of tph-1 resulted in
an∼60% decrease in motility (Fig. 2G and Table S1), which could
be explained by the fact that tph-1mutants have been shown to be
severely impaired in initiation and maintenance of swimming
(27), depletion of tdo-2 still resulted in an ∼2.6-fold increase
in motility, similar to the relative increase that we observed
in control animals (∼2.5-fold increase). However, suppression
of toxicity by tdo-2 depletion was more variable in the tph-1
mutants than WT animals (Table S1). Together, these results
indicated that, although serotonin could, in part, be responsible,
regulation of proteotoxicity by tdo-2 can occur independently of
its presence.

Increasing Tryptophan Concentrations Inhibits Toxicity. L-tryptophan
is an essential amino acid that can only be taken up through the
diet in both humans and C. elegans (28). To test whether the
accumulation of tryptophan was involved in regulating proteo-
toxicity, we supplemented the nematodes’ feed with increasing
amounts of L-tryptophan. We observed a dose-dependent sup-
pression of α-synuclein toxicity (Fig. 2H, Fig. S2C, and Table S1).
Supplementation with similar amounts of the essential amino
acid L-threonine did not affect α-synuclein toxicity (Fig. S2C),
whereas we measured similar fold increases in their abundance
by LC-MS/MS (Fig. S2 D and E). These results suggest that
inhibition of TDO-2 regulates proteotoxicity by increasing the
levels of tryptophan.

TDO-2 Is a General Regulator of Proteotoxicity. To test whether
TDO-2 had a general role in the regulation of proteotoxicity,
we analyzed the effects of tdo-2 depletion on toxicity of other
aggregation-prone disease proteins, including β-amyloid peptide
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and polyglutamine (Q40/128Q) in muscle cells and mecha-
nosensory neurons, and on functions of endogenous meta-
stable proteins, which are frequently used as indicators of general
protein homeostasis (6, 12, 17, 29–31). Depletion of tdo-2 re-
sulted in an ∼30% decrease in the number of paralyzed Aβ-
worms over a 14-d period (Fig. 3A). Similarly, depletion of tdo-2
increased the motility of Q40 animals by 1.5- and 2.1-fold in 8- and

12-d-old animals, respectively (Fig. 3B and Table S1), without
affecting their expression levels (Fig. S3 A and B).
Next, we tested whether tdo-2 could also regulate the misfold-

ing of metastable proteins in strains carrying mutations in unc-52
(e669su250) and unc-54 (e1157), encoding perlecan and a myo-
sin heavy chain protein, which result in the temperature-sensitive
misfolding of these muscle-specific proteins. When we moved
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these strains to a restrictive temperature (25 °C) for ∼42 h,
resulting in the temperature-sensitive misfolding of these mus-
cle-specific proteins, ∼70% of the control animals became par-
alyzed. Depletion of tdo-2 reduced this paralysis phenotype by
∼20% in unc-52 animals and ∼50% in unc-54 animals (Fig. 3C).
We then tested whether tdo-2 could suppress a temperature-
sensitive phenotype independent of motility. Animals carrying
a mutation in let-60 (ga89), the C. elegans homolog of ras-1,
present a developmental defect at the restrictive temperature.
Depletion of tdo-2 resulted in a rescue of this developmental
defect in the offspring of let-60 animals grown at the restrictive
temperature (25 °C), which was measured by the number of
hatched animals reaching L4 after ∼48 h (Fig. 3D).
Finally, we tested whether suppression of proteotoxicity by tdo-2

depletion could be extended to other cell types. To do so, we
knocked down tdo-2 in RNAi-sensitive animals expressing the first
exon of mutant huntingtin with an expanded polyQ tract (128Q)
in touch-receptor neurons (Fig. S3C). Touch response is greatly
impaired in 128Q animals but only moderately impaired in 19Q
control animals (32, 33). Depletion of tdo-2 reduced neuron
dysfunction in 128Q animals, whereas it did not affect the touch
response in 19Q animals (Fig. 3E and Fig. S3 D and E).
These data indicate that TDO-2 functions as a general regu-

lator of proteotoxicity.

TDO-2 Regulates Lifespan. Because many of the known regulators
of proteotoxicity play a role in regulating lifespan (7, 10, 12, 34,
35), we investigated whether down-regulation of tdo-2 would also
affect lifespan. Expression of α-synuclein in the body wall mus-
cles cells did not affect the animals’ lifespan (Fig. 4A and Table
S3). Knockdown of tdo-2 in both WT animals and animals ex-
pressing α-synuclein resulted in an extension of both the median
and mean lifespan of ∼15% (Fig. 4A and Table S3). Related to
this finding, knockdown of tdo-2 in WT animals affected re-
productive lifespan as well by causing a delay and an extension in
the production of progeny without affecting the total amount of
progeny (Fig. S4A). Furthermore, knockdown of tdo-2 in animals
without germ lines could still extend longevity (Fig. S4B and
Table S3), showing that tdo-2 does not exert its effects through
the germ line.
Moreover, depletion of tdo-2 could extend both mean and

median lifespan even more in long-lived, serotonin-deficient tph-1
mutant animals (Fig. 4B and Table S3), indicating that lifespan
extension by tdo-2 does not depend on serotonin.

Together, these data show that tdo-2 regulates both the chro-
nological lifespan as well as the reproductive span of C. elegans.
Next, we determined whether lifespan extension by depletion

of tdo-2 depended on the IIS, dietary restriction, or hypoxia
pathways, which had previously been implicated in protein ho-
meostasis (7, 10–12, 36). To that end, we depleted tdo-2 in strains
with inactivating mutations in hsf-1 and daf-16, which act in the
IIS pathway, and hif-1, which acts in the hypoxia stress response
pathway. Depletion of tdo-2 in daf-16 deletion mutants resulted
in a small extension of the median lifespan (Fig. 4C and Table
S3) and affected the mean lifespan in one of three independent
experiments (Table S3). It was noteworthy that knockdown of
tdo-2 in a DAF-16::GFP reporter strain prevented a decline in
DAF-16::GFP levels in old worms, supporting a role for DAF-16
in regulating lifespan by tdo-2 (Fig. S4 C–E). Depletion of tdo-2
in hif-1 mutant animals resulted in an extension of median and
mean lifespan as well but not to the same extent as for WT animals.
This finding suggests that lifespan extension by tdo-2 depletion
may, in part, depend on hif-1 (Fig. 4E and Table S3). In contrast,
depletion of tdo-2 resulted in an extension of both median and
mean lifespan in hsf-1 loss-of-function mutant animals, which
carry a truncating mutation in the transactivation domain pre-
venting the heat induction of HSF-1 target genes (37). This in-
crease was similar to the increase seen in WT animals (Fig. 4D
and Table S3). Similarly, when we depleted tdo-2 in long-lived
eat-2 mutants, which are often used to mimic dietary restriction,
this depletion resulted in an even larger increase in both median
and mean lifespan (Fig. 4F and Table S3). Moreover, we did not
observe any change in pharyngeal pumping behavior (Fig. S4F).
This finding indicates that tdo-2 does not act through dietary re-
striction, although we cannot exclude that other forms of dietary
restriction play a role.
Interestingly, the regulation of proteotoxicity was independent

of hsf-1, eat-2, and daf-16 (Fig. S5). This finding showed that the
regulation of lifespan by tdo-2 is either downstream or independent
of its role in regulating proteotoxicity.
Together, our data suggest that daf-16 is involved in lifespan

regulation by tdo-2 but that tdo-2 acts in parallel to pathways
regulating dietary restriction and hypoxia.

Discussion
Our data suggest that tdo-2 plays a role in regulating general
protein homeostasis during aging by increasing tryptophan levels.
Previously, inhibition of the kynurenine pathway has been shown
to suppress toxicity of neurodegenerative disease proteins by
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changing the relative abundance of the downstream metabo-
lites 3-hydroxykynurenine, which is neurotoxic, and kynurenic
acid, which is neuroprotective (38–40). Our data suggest yet
another role for the kynurenine pathway in neurodegeneration,
namely as a regulator of age-related protein toxicity. We show
that this role is independent of downstream metabolites. The fact
that the protective effect of tdo-2 inhibition is upstream of the
kynurenine pathway is supported by several of our findings. First,
deletion of individual enzymes downstream of tdo-2 in the
kynurenine pathway never resulted in a similar suppression of
α-synuclein toxicity as depletion of tdo-2. Second, in strains in
which downstream enzymes were deleted, depletion of tdo-2

always suppressed proteotoxicity to a similar extent as tdo-2 de-
pletion in WT animals, independent of relative changes in the
metabolite levels. Finally, when we fed worms with increasing
amounts of tryptophan, it also suppressed α-synuclein toxicity.
Although our results suggest that tdo-2 regulates toxicity

through tryptophan, tryptophan does not seem to act directly on
α-synuclein aggregation (Fig. S2F). One possibility is that tryp-
tophan or tryptophan derivatives play a role by acting on other
signaling molecules that influence proteotoxicity.
In mammals, TDO or its functional homolog indoleamine

2,3-dioxygenase can be induced by various internal and external
stimuli, such as hormones (41), stress (42, 43), and immune ac-
tivation (44), leading to the breakdown of tryptophan. Together
with the recent finding that inhibition of TDO reverses tumoral
immune resistance as well (45), our findings implicate TDO-2
as a general metabolic regulator of age-related pathologies
and lifespan.
Because tdo-2 expression naturally increases during aging (46)

and in experimental models expressing α-synuclein (47, 48), this
process may contribute to the age-dependent decline in protein
homeostasis. Our results suggest that inhibiting TDO may delay
this age-dependent process. Moreover, they provide insight into
the role of tryptophan metabolism in the biology of animal aging.
Because TDO and indoleamine 2,3- dioxygenase are evolutionary
highly conserved orthologs of TDO-2, tryptophan metabolism
may offer targets for therapeutic intervention in the early toxic
molecular events of aging-associated neurodegenerative diseases.

Methods
Media and Strains. Standard conditions were used for C. elegans propagation
at 20 °C (49). Information on strains, RNAi experiments, RT-PCRs, immuno-
blotting, DAF-16::GFP localization, motility, paralysis, temperature sensitivity,
touch response, lifespan, fecundity, and pharyngeal pumping assays can be
found in SI Methods.

LC-MS/MS. Samples were prepared as described in SI Methods. Tryptophan
and the kynurenine pathway metabolites were measured by LC–electrospray
ionization–MS/MS as described previously (25) and in detail in SI Methods.

Supplementation with L-Tryptophan, L-Threonine, or L-Kynurenine. Different
amounts of L-tryptophan (T-0254; Sigma) and L-threonine (T-8625; Sigma)
were added to NGM medium before autoclaving. Different amounts of
L-kynurenine (K8625; Sigma) were dissolved in H2O and added to the
Nematode Growth Medium (NGM) after autoclaving. Animals were grown
on the supplemented plates either from L1 or L4 as indicated. Motility was
measured on day 4 of adulthood. Threonine levels were measured by HPLC-
MS/MS and are described in more detail in SI Methods.
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