Help! Statistics!

Introduction to Longitudinal Data Analysis

Sacha la Bastide-van Gemert Medical Statistics and Decision Making Epidemiology, UMCG

Help! Statistics! Lunch time lectures								
What?	Frequently used timeframe for al No knowledge of	requently used statistical methods and questions in a manageable meframe for all researchers at the UMCG. Io knowledge of advanced statistics is required.						
When?	Lectures take pla	ectures take place every 2 nd Tuesday of the month, 12.00-13.00 hrs.						
Who? Unit for Medical Statistics and Decision Making								
When?	Where?	What?	Who?					
Dec 12, 2017 2018:	Room 16	Propensity Scoring	C. zu Eulenburg					
Feb 13, 2018		Regression to the mean and other pitfalls	H. Burgerhof					
March 13, 201	8							
Slides can be downloaded from: http://www.rug.nl/research/epidemiology/download-area								

Introduction to longitudinal data analyses: overview Clustered (or n • What is longitudinal data? Example: sevential seventia

- Why does it need a special approach?
 > revisiting the linear regression model
- Longitudinal data analysis: using summary measures
- Longitudinal data analysis: introduction of the multilevel model for change (mixed effects model)

Variables at <u>classroom level</u>: teacher effect, ... -> multilevel data

Longitudinal data The data-set: person-period format									
	alcohold-	ala.sav (Datas	iet1] - SPSS Data	Editor					
period format: son, each	Die gat y Die Bat y 1:id	ew Data D 	ansform Analyze	Graphs	Utilities Add-gris	Window Belp			
easurement is		id	COB	age	alcuse	Viiir Vi			
0000 0000	1	1.0	1	14.0	1.73				
lew case	2	1.0	1	15.0	2.00	 person : 			
	3	1.0	1	16.0	2.00				
ner nercon	- 4	2.0	1	14.0	0.00				
s per person	5	2.0	1	15.0	0.00	 person 2 			
riable: <i>age</i>	6	2.0	1	16.0	1.00				
me variable:	7	3.0	1	14.0	1.00				
	8	3.0	1	15.0	2.00	-			
	9	3.0	1	16.0	3.32				
ndependent)	10	4.0	1	14.0	0.00				
	11	4.0	1	15.0	2.00				
2: 000	12	4.0	1	16.0	1.73	r v			
	13	5.0	1	14.0	0.00	clustered			
to procood?	14	5.0	1	15.0	0.00	data!			
	15	5.0	1	16.0	0.00	L			
it (simple) linear	16	6.0	1	14.0	3.00				
ion analysis	17	6.0	1	15.0	3.00				
ion analysis	18	6.0	1	16.0	3.16				

Intermezzo The linear regression model revisited (2)					
Formally: we assume an underlying true population linear relationship, described by (subject <i>i</i>):					
$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ $\varepsilon_i \sim N(0, \sigma^2)$					
Residual ϵ : a random variable from a normal distribution with unknown, constant variance σ^2 , independent from the value of X					
Here: we assume the mean alcohol use values for <u>fixed</u> age values are on a straight line and the individual observations are assumed to be normally distributed around these means (<u>random</u> residual)					
Linear regression analysis: estimate β_0, β_1 by b_0, b_1 : find the line which is ``closest'' to the observed data points (ordinary least squares)					

Analysis of longitudinal data Using summary measures (1)

- To investigate the effect of covariates on the alcohol use of adolescents
 summary statistics could be investigated
- Choose a summary measure Y which reflects a relevant feature of the curve (e.g. the mean, maximum value, time of reaching the maximum, maximal velocity, the last value,...)
- Now there is just one outcome variable (the summary measure) per adolescent: independent observations -> multiple regression analysis!

Advantages:

- simple and easy (can be done using standard techniques)
- provides nice summaries of the data
- Disadvantages:
- inefficient use of the whole data
- possible heterogeneity of variance for the summary measure

Analysis of longitudinal data Summarizing so far...

- Investigating change over time requires multiple (ideally ≥ 3 waves) measurements over time per subject (longitudinal data)
- Linear regression model is not applicable, due to dependency in longitudinal data
- Using summary measures is an option, but it means throwing away information and is limited in answering research questions on change
- Using a cross-sectional data-set instead does not answer research questions on change either

Note: differences between groups of different $age \neq$ systematic individual change: the highest scoring person at one age need not be the highest scoring person at another age!

Some final remarks

- A lot more need to be considered in the context of multilevel models, such as:
 - unbalanced/missing data
 - time-dependent covariates
 - other correlation structures/model designs
 - various estimation methods
 - model building
- Similar modelling techniques exist for different types of outcome variables
- Most major statistical software packages can handle these models
- This abundance of possibilities can also be a pitfall: these models are complex and applying them correctly is a challenge

A selection of books and courses

- Snijders & Bosker: Multilevel Analysis. An introduction to basic and advanced multilevel modeling (London, 1999, 2011)
- Verbeke & Molenberghs: Linear mixed models for longitudinal data (New York, 2000)
- Singer & Willet: Applied longitudinal data analysis. Modeling change and event occurence (Oxford, 2003)
- Pinheiro & Bates: Mixed effects models in S and S-plus (New York, 2000)

Courses offered yearly from our unit:

- Mixed models for clustered data
- Applied longitudinal data analysis

Next Help! Statistics! Lunchtime Lecture

Propensity Scoring

Christine zu Eulenburg December 12, 2017 Room 16