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Clustered data

=“Multilevel data”
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Clustered data
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Independent t-test

Mann-Whitney U-test
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Example

Dupuytren’s disease:
difference treatments on
angular deformities?

Linear regression model:

Variable Effect SE T-value
estimate

Intercept 42.16 0.77 94.84 <0.001
Age 0.04 0.05 0.75 0.45

Treatment type 4.17 112 3.72 <0.001




Example

Dupuytren’s disease:
difference treatments on
angular deformities?

Linear mixed-effect model:

Variable Effect SE T-value
estimate

Intercept 38.11 3.92 10.82 <0.001
Age -0.10 0.21 -0.47 0.65

Treatment type 4.97 4.46 1.11 0.28
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Overestimation of precision

= Linear regression model:  KELELE Effect | SE | T-value
estimate

Intercept 42.16 0.77 24.84 <0.001
Age 0.04 0.05 0.75 0.45
Treatment type 4.17 1.12 3.72 <0.001

« Linear mixed-effect model: | I A T
Intercept 38.1 3.52 10.82 <0.001
Age -0.10 0.21 -0.47 0.65

Treatment type 4.97 4.46 1.1 0.28
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Overestimation of precision

.,/ Linear regression model

Linear mixed-effect model

Ntani et al. (2021) BMC Med Res Methodol 21:139. 9



Relevance

4

Ignoring clustering leads to
overestimation of precision

- Too small standard errors

- Reject HO too easily
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Correlated scores
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Clustering in clinical studies

= Multiple measurements in time of the same persons

Person A Person B

SN N

M1 M2 M3 M1 M2
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= Multicenter study

Hospital A Hospital B

N AN

Patient Patient Patient Patient




Clustering in clinical studies

= Multiple organs/body parts in the same person

Patient A
Left lung Right lung
Superior Inferior Superior Middle Inferior

lobe lobe lobe lobe lobe




Clustering in clinical studies

= Multiple studies in a meta-analysis

Study A

AN

Study B

PTANN

Pat 1 Pat 2 Pat 3

Pat 1 Pat 2 Pat 3

Pat 4
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Clustering in clinical studies

= Multiple observers in an agreement study

Observer A Observer B

Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat 6




handle this

Minimize levels In your
dataset

. Use analysis techniques that

can handle clustering

. Define the amount of

clustering and decide based
on that what to do
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Minimize levels In dataset

= Aggregate data

= Randomly select one organ / body in analysis

-> Drawback: not using all information available



Analysis techniques for clustered data

= Mixed-effects models

= All information can be used

= Clustering at different levels can be analysed

- Drawback: complex
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Define amount of clustering

* Intraclass correlation coefficient (ICC)

Variable Effect T-value
estimate

= Variance components Intercept 42.16
Age 0.04
Treatment type 4.17

Variable Effect SE T-value
estimate

Intercept 38.11
Age -0.10

ICC = 0.34 Treatment type 4.97

0.77
0.05
1.12

3.52
0.21
4.46

94.84
0.75
3.72

10.82
-0.47
1.1

<0.001
0.45
<0.001

<0.001
0.65
0.28
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Other things to keep in mind

- Take clustering into account Observer A Observer B
In sample size calculation

- Crossed and nested effects

are handled in a different /A\
m a nn e r Left lung Right lung
Superior/\lnf;rior Superior Mi;;dle Inferior
lobe lobe lobe lobe lobe

2
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Next “Help! Statistics” lectures

= January - No sessions

= February 7t" - Sacha la Bastide “Intro to longitudinal
data analysis”
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The server is administrated by the
BCN PhD Student Council

Did you ever get stuck with your analysis because you feel like you are lacking knowledge? Do you feel
confident in a specific modelling technique and would be willing to help others in learning more?

We created a Discord server for you to ask questions, provide help, communicate and facilitate
collaborations.

The server: Text & Voice channels
For whom is the server?

BCN and GSMS
Research Master Students

PhD Students
describe your project & the benefits for the helper Post-Docs

Seeking help

a must read
Providing help

describe with which statistics/type of analysis you can help with Faculty members

NOW IT’S UP TO YOU!
—> Sign up via the QR code (your first + last name + your department)
—> choose your role = ask/provide help!
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