

Dieuwke Broekstra, PhD Dept. Plastic Surgery

Patients, hands, fingers or joints?

Clustered data

Background

Dupuytren's disease

Clustered data

- "Multilevel data"
- "Correlated data"
- "Nested data"

Clustered data

Background

Assumption of independent observations or residuals

Independent t-test Mann-Whitney U-test

Independent??

Example

Dupuytren's disease: difference treatments on angular deformities?

Linear regression model:

Variable	Effect estimate	SE	T-value	Р
Intercept	42.16	0.77	54.84	<0.001
Age	0.04	0.05	0.75	0.45
Treatment type	4.17	1.12	3.72	<0.001

Example

Dupuytren's disease: difference treatments on angular deformities?

Linear mixed-effect model:

Variable	Effect estimate	SE	T-value	Р
Intercept	38.11	3.52	10.82	<0.001
Age	-0.10	0.21	-0.47	0.65
Treatment type	4.97	4.46	1.11	0.28

Overestimation of precision

Linear regression model:

Variable	Effect estimate	SE	T-value	Р
Intercept	42.16	0.77	54.84	<0.001
Age	0.04	0.05	0.75	0.45
Treatment type	4.17	1.12	3.72	<0.001

Linear mixed-effect model:

Variable	Effect estimate	SE	T-value	Р
Intercept	38.11	3.52	10.82	<0.001
Age	-0.10	0.21	-0.47	0.65
Treatment type	4.97	4.46	1.11	0.28

Overestimation of precision

Relevance

Ignoring clustering leads to overestimation of precision

- → Too small standard errors
- → Reject H0 too easily

Shared factors

Correlated scores

Age

• Multiple measurements in time of the same persons

Multicenter study

• Multiple organs/body parts in the same person

• Multiple studies in a meta-analysis

• Multiple observers in an agreement study

How to handle this

- Minimize levels in your dataset
- 2. Use analysis techniques that can handle clustering
- 3. Define the amount of clustering and decide based on that what to do

Minimize levels in dataset

Aggregate data

Randomly select one organ / body in analysis

→ Drawback: not using all information available

Analysis techniques for clustered data

Mixed-effects models

All information can be used

Clustering at different levels can be analysed

→ Drawback: complex

Define amount of clustering

Intraclass correlation coefficient (ICC)

Variance components

Variable	Effect estimate	SE	T-value	Р
Intercept	42.16	0.77	54.84	<0.001
Age	0.04	0.05	0.75	0.45
Treatment type	4.17	1.12	3.72	<0.001

Variable	Effect estimate	SE	T-value	Р
Intercept	38.11	3.52	10.82	<0.001
Age	-0.10	0.21	-0.47	0.65
Treatment type	4.97	4.46	1.11	0.28

ICC = 0.34

Other things to keep in mind

- Take clustering into account in sample size calculation

 Crossed and nested effects are handled in a different manner

Next "Help! Statistics" lectures

January – No sessions

 February 7th - Sacha la Bastide "Intro to longitudinal data analysis"

Thank you

d.c.broekstra@umcg.nl

BCN PhD Student Council

Did you ever get stuck with your analysis because you feel like you are lacking knowledge? Do you feel confident in a specific modelling technique and would be willing to help others in learning more? We created a Discord server for you to ask questions, provide help, communicate and facilitate collaborations.

For whom is the server? **BCN and GSMS**

- Research Master Students
- PhD Students
- Post-Docs
- Faculty members

NOW IT'S UP TO YOU!

→ Sign up via the QR code (your first + last name + your department) \rightarrow choose your role \rightarrow ask/provide help!

TIPI To receive notifications, bookmark the server in your browser or download the desktop/mobile app!