## Always look on the green side of software





- @CoralCalero
- @GreenTAlarcos
- @GrupoAlarcos
- @GreenTICTips



# 20% GLOBAL ENERGY CONSUMPTION IN 2030



Green
Computing
(or Green IT)

Efficient use of resources, minimizing the environmental impact, maximizing the economic feasibility and assuring social duties.

Includes to work on: high consuming technologies, environmental waste, product development, computer recycling,

• • •





Green Hardware

Green
Software

"Our civilisation is as reliant on software as it is on water"

BJARNE STROUSTRUP | the creator of C++ El PAÍS Tecnología. February 5th, 2019



8.000 million people

Most of them with devices using software

JAN 2023

#### **OVERVIEW OF INTERNET USE**

ESSENTIAL INDICATORS OF INTERNET ADOPTION AND USE



TOTAL INTERNET **USERS** 



5.16 BILLION

**AVERAGE DAILY TIME** SPENT USING THE INTERNET BY EACH INTERNET USER



6H 37M

YOY: -4.8% (-20M)

INTERNET USERS AS A PERCENTAGE OF TOTAL POPULATION



64.4%

YOY: +1.1% (+70 BPS)

PERCENTAGE OF USERS ACCESSING THE INTERNET VIA MOBILE DEVICES



92.3%

YOY: +0.2% (+20 BPS)

YEAR-ON-YEAR CHANGE IN THE TOTAL NUMBER OF INTERNET USERS



+1.9%

+98 MILLION

PERCENTAGE OF USERS ACCESSING THE INTERNET VIA COMPUTERS AND TABLETS



65.6% YOY: -7.9% (-560 BPS)

PERCENTAGE OF THE TOTAL FEMALE POPULATION THAT USES THE INTERNET



61.6%

YOY: +1.4% (+87 BPS)

PERCENTAGE OF THE TOTAL URBAN POPULATION THAT USES THE INTERNET



are.

78.3%

PERCENTAGE OF THE TOTAL MALE POPULATION THAT USES THE INTERNET



67.2%

YOY: +0.8% (+53 BPS)

PERCENTAGE OF THE TOTAL RURAL POPULATION THAT USES THE INTERNET



45.8%

(0)

we are social

SOURCES: KEPIOS ANALYSIS; ITU; GSMA INTELLIGENCE; EUROSTAT; WORLD BANK; GOOGLE'S ADVERTISING RESOURCES; CIA WORLD FACTBOOK; CNNIC; APJIL KANTAR & IAMAI; LOCAL GOVERNMENT AUTHORITIES; UNITED NATIONS. TIME SPENT AND MOBILE SHARE DATA FROM GWI [Q3 2022]. SEE GWI.COM FOR MORE DETAILS. NOTES: GENDER DATA ARE ONLY AVAILABLE FOR "FEMALE" AND "MALE". PERCENTAGE CHANGE FIGURES IN THE BOTTOM ROWS OF DATA SHOW RELATIVE YEAR-ON-YEAR CHANGE. "BPS" FIGURES REPRESENT BASIS POINTS, AND SHOW ABSOLUTE YEAR-ON-YEAR CHANGE. COMPAR ABILITY: SOURCE AND BASE CHANGES, ALL FIGURES USE THE LATEST AVAILABLE DATA. BUT SOME SOURCE DATA MAY NOT HAVE BEEN UPDATED IN THE PAST YEAR, SEE NOTES ON DATA FOR DETAILS.

Ð





## Data

**RACONTEUR** 

AI is having a strong transformative impact on multiple sectors of activity

Companies are spending nearly \$20 billion dollars on AI products and services

AI is one of the technologies with the greatest projection and impact in all areas of activity

Tech giants like
Google, Apple,
Microsoft and
Amazon spend
billions to create
AI products and
services



Artificial Intelligence







https://www.iea.org/commentaries/the-carbon-footprint-of-streaming-video-fact-checking-the-headlines



https://www.iea.org/commentaries/the-carbon-footprint-of-streaming-video-fact-checking-the-headlines



A. S. Andrae and T. Edler, "On global electricity usage of communication technology: trends to 2030"













Strubell et al. (2019) Energy and Policy Considerations for Deep Learning in NLP. https://doi.org/10.48550/arXiv.1906.02243







SOS (Software Sustainability)





Sustainable Software is software, whose direct and indirect negative impacts on economy, society, human beings, and environment that result from development, deployment, and usage of the software are minimal and/or which have a positive effect on sustainable development.

Dick, M. and S. Naumann Enhancing Software Engineering Processes towards Susainable Software Product Design. 24th International Conference EnviroInfo. K.Greve and A.B. Cremers, Eds. Shaker, Aachen, 2010. pp. 706-715.



Application versions should maintain appropriate levels of energy use.

Green BY Software

Robot software that clears weeds from plantations using only 5% of the usual herbicide, applying products only where needed.



If we want to measure the consumption, we need an artifact to do it



#### Software-based approach

|                      |                            | Software granularity |             |         |        |        | Hardware level of details |     |        |     |     |         |         |               |
|----------------------|----------------------------|----------------------|-------------|---------|--------|--------|---------------------------|-----|--------|-----|-----|---------|---------|---------------|
| Measuring instrument | Sampling frequency         | SO                   | Application | Process | Thread | Method | Line of code              | CPU | Memory | GPU | HDD | Network | Monitor | Whole machine |
| Intel Power Gadget   | 1-1k Hz [3]                |                      |             |         |        |        |                           |     |        |     |     |         |         |               |
| RAPL                 | 1k Hz                      |                      |             |         |        |        |                           |     |        |     |     |         |         |               |
| Powerstat            | Custom [5]                 |                      |             |         |        |        |                           |     |        |     |     |         |         |               |
| PowerTop             | 1 Hz                       |                      |             |         |        |        |                           |     |        |     |     |         |         |               |
| Perf                 | Custom [5] (Default 1k Hz) |                      |             |         |        |        |                           |     |        |     |     |         |         |               |
| Likwid               | 1 Hz                       |                      |             |         |        |        |                           |     |        |     |     |         |         |               |
| Nvidia-smi           | 1-6 Hz [6]                 |                      |             |         |        |        |                           |     |        |     |     |         |         |               |
| Intel VTune Profiler | 1Hz-100kHz [2]             |                      |             |         |        |        |                           |     |        |     |     |         |         |               |
| JouleMeter           | 1 Hz                       |                      |             |         |        |        |                           |     |        |     |     |         |         |               |
| SoftWatt             | Every clock cycle          |                      |             |         |        |        |                           |     |        |     |     |         |         |               |

|                                                          |                    | Software granularity |             |         |        |        | Hardware level of details |     |        |     |     |         |         |               |
|----------------------------------------------------------|--------------------|----------------------|-------------|---------|--------|--------|---------------------------|-----|--------|-----|-----|---------|---------|---------------|
| Measuring instrument                                     | Sampling frequency | 0.5                  | Application | Process | Thread | Method | Line of code              | CPU | Memory | GPU | HDD | Network | Monitor | Whole machine |
| Energy Efficiency Tester (EET)                           | 100 Hz             |                      |             |         |        |        |                           |     |        |     |     |         |         |               |
| LEAP node                                                | 10 Hz              |                      |             |         |        |        |                           |     |        |     |     |         |         |               |
| Kill A Watt                                              | -                  |                      |             |         |        |        |                           |     |        |     |     |         |         |               |
| Efergy Elite                                             | [1]                |                      |             |         |        |        |                           |     |        |     |     |         |         |               |
| Wemo Insight Smart Plug                                  | 1 Hz               |                      |             |         |        |        |                           |     |        |     |     |         |         |               |
| Sense Home Energy Monitor (Two clamp-on current sensors) | [4]                |                      |             |         |        |        |                           |     |        |     |     |         |         |               |
| Watts Up? Pro                                            | 1 Hz               |                      |             |         |        |        |                           |     |        |     |     |         |         |               |

#### Hardware-based approach

We also need to know **how** to measure the consumption.



### Methodologies and standards

| ards                                                                     | Sof      | tware Me       | Software Energy<br>Measurement |              |                 |                   |
|--------------------------------------------------------------------------|----------|----------------|--------------------------------|--------------|-----------------|-------------------|
|                                                                          | GQM      | GQ(I)M<br>GDSM | PSM                            | ISO<br>15939 | Green<br>Mining | Jagroep<br>et al. |
| Guidelines for the software measurement process                          | <b>√</b> | <b>√</b>       | ✓                              | <b>√</b>     | <b>√</b>        | <b>✓</b>          |
| Specific guidelines for analyzing the data                               |          | ✓              | ✓                              |              |                 |                   |
| Specific guidelines for reporting results                                |          |                | ✓                              | <b>✓</b>     |                 |                   |
| Guidelines for the process of<br>analyzing software energy<br>efficiency |          |                |                                |              | <b>~</b>        | <b>✓</b>          |
| Specific guidelines for carrying out energy measurements of software     |          |                |                                |              |                 | <b>√</b>          |



**FEETINGS** (Framework for Energy Efficiency Testing to Improve eNviromental Goals of the Software)



J. Mancebo, C. Calero, F. Garcia, M.A. Moraga, I. Garcia (2021). FEETINGS: Framework for Energy Efficiency Testing to Improve Environmental Goal of the Software, Sustainable Computing: Informatics and Systems, Vol. 30, 100558, https://doi.org/10.1016/j.suscom.2021.100558.



Methodological component

Green Software
Measurement Process
(GSMP)





Green Software Measurement Ontology (GSMO)

**Conceptual component** 

Technological component

EET

**ELLIOT** 

Green
Software
Measurement
Ontology
(GSMO)





Methodological component

Green Software Measurement Process (GSMP)





Green Software Measurement Ontology (GSMO)

Conceptual component

Technological component

EET

**ELLIOT** 

#### Green Software Measurement Process (GSMP)



J. Mancebo, F. García, C. Calero (2021) A process for analysing the energy efficiency of software, Information and Software Technology, Vol.134,106560, https://doi.org/10.1016/j.infsof.2021.106560.



Methodological component

Green Software
Measurement Process
(GSMP)



Green Software
Measurement Ontology
(GSMO)

Conceptual component

**Technological component** 

EET

**ELLIOT** 







Two main types of activities

# Dissemination research

Formal research

## Dissemination research







































E

Results from 2021









### Formal Research

#### Artificial Intelligence

Energy efficiency of Alalgorithms

Training and usage consumption of Al algorithms

Use of compressed data or compact data structures





Data compression algorithms

In collaboration with

Universidad de A Coruña (Spain)

Mancebo, J., Calero, C., García, F., Brisaboa, N.R., Fariña, A. and Pedreira, O (2019) Saving Energy in Text Search Using Compression. GREEN 2019: The Fourth International Conference on Green Communications, Computing and Technologies. IARIA, 2019. ISBN: 978-1-1



Maintenance and energy consumption

Calero, C., Polo, M. and Moraga, M.A. (202: Investigating the impact on execution time and energconsumption of developing with Spring, Sustainabl Computing: Informatics and Systems, Vol. 32, 10060: December 2021, ISSN 2211-0587 https://doi.org/10.1106/j.uscom.2021.10060



Design Patterns







Programming languages consumption

In collaboration with Universidade do Porto (Portugal)



Personal Health Records vs. Energy Efficiency

En colaboración con la Universidad de Murcia







#### Software Sustainability

Software industries CSR and software sustainability

Dashboard for software Sustainability monitoring



In collaboration with
Universidad de
A Coruña (Spain)

Data compression algorithms

Mancebo, J., Calero, C., García, F., Brisaboa, N.R., Fariña, A. and Pedreira, O (2019) Saving Energy in Text Search Using Compression. GREEN 2019: The Fourth International Conference on Green Communications, Computing and Technologies. IARIA, 2019. ISBN: 978-1-61208-751-1

#### Scenarios

- Uncompressed data
- Data compressed with ETDC (End-Tagged Dense Code)

- Search of 5 characters pattern
- Search of 10 characters pattern
- Search of more than 10 characters pattern

#### **Processor Energy Consumption**



#### Total Energy Consumption (DUT)









Artificial Intelligence

M. Gutiérrez, M. Á. Moraga, F. García and C. Calero, Green-IN Machine Learning at a Glance, *Computer*, vol. 56, no. 6, pp. 35-43, June 2023, doi: 10.1109/MC.2023.3254646.

#### Scenarios

ML model based on logistic regression (LRM)

&

#### Three solvers:

- SAG (Stochastic Average Gradient descent)
- Newton-cg (Conjugate Gradient ascent)
- LBFGS (limited-memory BFGS)

dataset for the detection of fraudulent credit card transactions

| Solver    | Time       | Precision | Accuracy | Consumption |
|-----------|------------|-----------|----------|-------------|
| LBFGS     | 6,190.41   | 99.91%    | 0.85     | 1,942.52    |
| Newton-CG | 212,607.45 | 99.93%    | 0.94     | 58,493.58   |
| SAG       | 27,133.04  | 99.87%    | 0.87     | 3,790.75    |

| Solver    | Time       | Precision | Accuracy | Consumption |
|-----------|------------|-----------|----------|-------------|
| LBFGS     | 6,190.41   | 99.91%    | 0.85     | 1,942.52    |
| Newton-CG | 212,607.45 | 99.93%    | 0.94     | 58,493.58   |
| SAG       | 27,133.04  | 99.87%    | 0.87     | 3,790.75    |



| Solver    | Time       | Precision | Accuracy | Consumption |
|-----------|------------|-----------|----------|-------------|
| LBFGS     | 6,190.41   | 99.91%    | 0.85     | 1,942.52    |
| Newton-CG | 212,607.45 | 99.93%    | 0.94     | 58,493.58   |
| SAG       | 27,133.04  | 99.87%    | 0.87     | 3,790.75    |



| Solver    | Time       | Precision | Accuracy | Consumption |
|-----------|------------|-----------|----------|-------------|
| LBFGS     | 6,190.41   | 99.91%    | 0.85     | 1,942.52    |
| Newton-CG | 212,607.45 | 99.93%    | 0.94     | 58,493.58   |
| SAG       | 27,133.04  | 99.87%    | 0.87     | 3,790.75    |



Software is becoming increasingly important

@CoralCalero@GreenTAlarcos@GrupoAlarcos@GreenTICTips

But it is a major energy consumer

It is our responsibility to make it more efficient

We are on the way (research, industry, governments)

Periodically check spam, trash, etc. and delete permanently the emails on them.

Send emails with delivery and reading confirmation only if necessary.

It is better to share a document in a repository than send it to many people.

Clear your browser history periodically

Schedule automatic shutdown of devices after a certain period of inactivity.

Delete digital content that you do not use (i.e. repeated or discarded photos) and review and delete images or content received through social networks

In social networks, avoid using audio or video. Instead use text or emojis.

Avoid forwarding content indiscriminately (e.g. content received via whatsapp and forwarded to many contacts).