3D printed objects that kill microbes
Material scientist Andreas Hermann , orthodontist Yijin Ren and their colleagues have made a 3D printing substrate which kills bacteria on contact. The first applications will be in dentistry, but other implants may follow. Their results were recently published in the journal Advanced Functional Materials.

When the paper was published a few weeks ago it started a bit of a media storm. ‘New Scientist, the Guardian, the New York Post and now even Al Jazeera is interested’, says Andreas Herrmann. As a materials scientist at the University of Groningen Zernike Institute for Advanced Materials , he works in close collaboration with the Kolff Institute for Biomedical Engineering and Materials Science at the UMCG University hospital.
‘The director of Kolff, who is head of the Orthodontics Department, asked me if I could come up with an antimicrobial dental glue’, Herrmann explains. Kids with braces have small metal blocks glued to their teeth, and these are an ideal breeding ground for the microbes that cause tooth decay. ‘So when I saw all sorts of 3D printed objects for use in dentistry in her office, I said: why not incorporate the antimicrobials in 3D prints?’ The results were published after some two-and-a-half years of work.
In dentistry, it is standard practice to work with materials that polymerize under UV light. Herrmann took monomers which are routinely used, and set out to add what are known as quaternary ammonium ions. These positively charged molecules interact with the negatively charged bacterial membrane and puncture a hole in it, killing the microbes.
The scientists used two approaches to make a printable antimicrobial material. In the first, they mixed two different monomers and an additional quaternary ammonium compound with a polymerizable unit and used UV light to polymerize the whole mixture. But some antimicrobials could still leach out of the polymer mesh.

In the second approach, they first polymerized the antimicrobial groups to form long chains. The resulting antimicrobial polymer was added to the 3D printing fluid, and became entangled with the other polymers during polymerization. Here only very little antimicrobial material diffused out.
‘The trick in both approaches was to get the mixture right to enable 3D printing and minimize any leakage of the antimicrobials. You don’t want them to enter the mouth and thus the intestines, where they could kill off gut microbes’, Herrmann explains.
In the end, they succeeded. Herrmann: ‘We have tested printed objects with saliva. All the components are already being used in humans, but more tests are needed before we can bring these 3D antimicrobials to the market.’ The first applications will probably be in orthodontics, where 3D printed retainers and aligners are already in use. In the longer run, 3D printed crowns with antimicrobial properties could be an option.
The use of antimicrobials could solve a major problem in dentistry. ‘Any artificial objects in the mouth can be colonized by bacteria’, Herrmann explains. In the US alone, this causes billions of dollars in dental costs each year. But the process of 3D printed antimicrobial medical devices has even wider applications. ‘All implants in medicine suffer from biofilm formation, so giving them antibacterial properties would be beneficial.’
Reference: 3D-Printable Antimicrobial Composite Resins Jun Yue, Pei Zhao, Jennifer Y. Gerasimov, Marieke van de Lagemaat, Arjen Grotenhuis, Minie Rustema-Abbing, Henny C. van der Mei, Henk J. Busscher, Andreas Herrmann and Yijin Ren Advanced Functional Materials. First published online: 9 October 2015 DOI: 10.1002/adfm.201502384
Last modified: | 11 February 2025 2.44 p.m. |
More news
-
07 April 2025
Plastic recycling: how to best reuse carbon atoms
Scientists at the University of Groningen are working on new ways to recycle plastic waste into new, high-quality products.
-
07 April 2025
Gratama Jubilee gift for Marleen Kamperman and Marijke Leliveld
Prof. Marleen Kamperman and Marijke Leliveld received EUR 100,000 from the Gratama Foundation for their research project aimed at producing organic textiles for sustainable fashion.
-
03 April 2025
IMChip and MimeCure in top 10 of the national Academic Startup Competition
Prof. Tamalika Banerjee’s startup IMChip and Prof. Erik Frijlink and Dr. Luke van der Koog’s startup MimeCure have made it into the top 10 of the national Academic Startup Competition.