Bacterial mechanosensitive channels. What we can learn from a simple model system, when we design it to be more complicated
PhD ceremony: Mr. J.P. Birkner, 12.45 uur, Academiegebouw, Broerstraat 5, Groningen
Dissertation: Bacterial mechanosensitive channels. What we can learn from a simple model system, when we design it to be more complicated
Promotor(s): prof. B. Poolman
Faculty: Mathematics and Natural Sciences
In his thesis Jan Peter Birkner reports on his new method that allows single-subunit resolution for manipulating and monitoring of the mechanosensitive channel of large conductance from Escherichia coli. He gradually changed the hydrophobicity of the pore constriction in this homopentameric protein by modifying a critical pore residue one subunit at a time.
In all kingdoms of life there are substances flowing: macroscopic streams, like blood in our arteries and veins, or water in plants, but also microscopic ones, like occurring at the interface of a single cell or within membrane channels. When we zoom-in to the latter, to the nanometer scaled ion channels and solute pores of biological membranes, we face barriers for the flow beyond obvious physical restrictions. In the narrow confinements as found in various ion channels (KcsA, nAChR, MscL), hydrophobic entities provide a strong barrier to the flow of water and ions across cellular membranes even though their geometry would theoretically not block it. These physically open, but biologically closed hydrophobic motifs are thought to maintain the inward and outward traffic through ion channels by a mechanism designated hydrophobic gating.
Birkner's experimental results suggest that both the channel opening and closing are initiated by one helix of a single subunit and that the participation of each of the five identical subunits to the structural transitions between the closed and open states is asymmetrical. The minimal change in pore hydrophobicity required for gating seems ideal for a fast and energy-efficient response to the changes in the membrane tension.
Last modified: | 13 March 2020 01.02 a.m. |
More news
-
21 November 2024
Dutch Research Agenda funding for research to improve climate policy
Michele Cucuzzella and Ming Cao are partners in the research programme ‘Behavioural Insights for Climate Policy’
-
13 November 2024
Can we live on our planet without destroying it?
How much land, water, and other resources does our lifestyle require? And how can we adapt this lifestyle to stay within the limits of what the Earth can give?
-
13 November 2024
Emergentie-onderzoek in de kosmologie ontvangt NWA-ORC-subsidie
Emergentie in de kosmologie - Het doel van het onderzoek is oa te begrijpen hoe ruimte, tijd, zwaartekracht en het universum uit bijna niets lijken te ontstaan. Meer informatie hierover in het nieuwsbericht.