Autonomous movement using a molecular/silica hybrid approach
PhD ceremony: Mr. R. Roswanda, 16.15 uur, Academiegebouw, Broerstraat 5, Groningen
Proefschrift: Autonomous movement using a molecular/silica hybrid approach
Promotor(s): prof. B.L. Feringa
Faculty: Mathematics and Natural Sciences
One of the most fascinating challenges in nanotechnology is powering and controlling motors. The aim of the research described in this thesis is trying to answer that challenge by creating autonomously moving micro/nano objects that are powered by molecular catalytic propulsion.
The molecular catalytic propulsion is fueled by hydrogen peroxide which is decomposed into water and oxygen by a dinuclear manganese catalyst which is attached the particles. The particles of choice are silica and zeolite L.
The study reveals the size limits at which the force generated by catalytic propulsion will result in autonomous movement before the Brownian motion is overwhelming the system. It is shown that at the submicron size range, the molecular catalytic system attached to silica A (231 ± 35 nm) showed, unexpectedly, a slower diffusion not faster in the presence of hydrogen peroxide.
Further studies are needed to understand the effect of the catalytic reaction of hydrogen peroxide decomposition by the manganese complex on the particle’s movement in this size range.
Last modified: | 13 March 2020 01.00 a.m. |
More news
-
01 April 2025
NSC’s electoral reform plan may have unwanted consequences
The new voting system, proposed by minister Uitermark, could jeopardize the fundamental principle of proportional representation, says Davide Grossi, Professor of Collective Decision Making and Computation at the University of Groningen
-
01 April 2025
‘AiNed’ National Growth Fund grant for speeding adoption of AI at SMEs
Professor Ming Cao receives an ‘AiNed’ Growth Fund grant of EUR 2.4 million for research that will contribute to faster adoption of AI at SMEs in the technical industry in the Netherlands.
-
01 April 2025
'Diversity leads to better science'
In addition to her biological research on ageing, Hannah Dugdale also studies disparities relating to diversity in science. Thanks to the latter, she is one of the two 2024 laureates of the Athena Award, an NWO prize for successful and inspiring...