Efficient strategies for the one-step modification of aminoglycoside antibiotics
PhD ceremony: Mr. A.A. Bastian, 11.00 uur, Academiegebouw, Broerstraat 5, Groningen
Dissertation: Efficient strategies for the one-step modification of aminoglycoside antibiotics
Promotor(s): prof. A. Herrmann
Faculty: Mathematics and Natural Sciences
Emerging trends in drug discovery are prompting a renewed interest in natural products as source of chemical diversity and lead structures. However, owing structural complexity of many natural compounds the synthesis of derivatives is not easily realized. Therefore, in this thesis two strategies are presented which enable regioselective modification of compounds carrying several functionalities of similar reactivity in a single synthetic step. First, a conceptually new approach is demonstrated using supramolecular protective groups based on RNA aptamers, so called aptameric protective groups (APGs), for the modification of complex natural products. It is shown that APGs block several functionalities by non-covalent interactions in a molecule while functional groups not in contact with the APG can be transformed chemo- and regioselectively. Using this technique aminoglycoside antibiotics neomycin B and paromomycin were modified at different positions employing different APGs and chemical transformations. According to these results APGs merit consideration as a new synthetic method in organic synthesis as they can be evolved for a large variety of target molecules and their generation relies on a well-established process. The second strategy is based on a regioselective azide introduction in a particular position of neamine antibiotics without the use of protective group chemistry. Here, an azide-transfer reagent was employed for the selective modification of diverse neamine antibiotics in C3 position of the 2 deoxystreptamine ring. Since this position is one target of the bacterial resistance mechanism, this facile azide introduction will accelerate the development of new promising antibiotics overcoming antibacterial resistance.
Last modified: | 13 March 2020 12.59 a.m. |
More news
-
01 April 2025
NSC’s electoral reform plan may have unwanted consequences
The new voting system, proposed by minister Uitermark, could jeopardize the fundamental principle of proportional representation, says Davide Grossi, Professor of Collective Decision Making and Computation at the University of Groningen
-
01 April 2025
‘AiNed’ National Growth Fund grant for speeding adoption of AI at SMEs
Professor Ming Cao receives an ‘AiNed’ Growth Fund grant of EUR 2.4 million for research that will contribute to faster adoption of AI at SMEs in the technical industry in the Netherlands.
-
01 April 2025
'Diversity leads to better science'
In addition to her biological research on ageing, Hannah Dugdale also studies disparities relating to diversity in science. Thanks to the latter, she is one of the two 2024 laureates of the Athena Award, an NWO prize for successful and inspiring...