Molecular gas and dust influenced by massive protostars. Spectral surveys in the far-infrared and submillimeter
PhD ceremony: Mr. M.H.D. van der Wiel, 16.15 uur, Academiegebouw, Broerstraat 5, Groningen
Title: Molecular gas and dust influenced by massive protostars. Spectral surveys in the far-infrared and submillimeter
Promotor(s): prof. M.C. Spaans
Faculty: Mathematics and Natural Sciences
The interstellar gas from which new stars form is crucially influenced by these same 'protostars': gas particles are excited and heated by the protostar. At the same time, the star formation process depends on the gas reservoir: if gas is too warm or dynamically 'stirred', it will not accumulate and contribute to the final mass of the forming star. This issue is specifically important in the formation of massive stars (more than eight times the mass of the Sun), because these stars produce at least 1000 times more radiation, impeding the accretion of gas.
In this thesis I analyze spectroscopic observations in the far-infrared and submillimeter wavelength regimes. Molecular constituents of interstellar gas are detected in these observations with ground- and space-based telescopes. Comparisons with model simulations provide insight into the influence of massive protostars on the surrounding molecular gas, both from a physical and from a chemical point of view.
The results of this research indicate inhomogeneity in the density structure of the gas reservoirs that surround protostars, both in small-scale 'clumpiness' and on larger scales, for example in the form of axi-symmetric, carved-out areas through which excess energy can escape. Other aspects of the research emphasize how exchange between the gas phase and the surfaces of dust grains affects the interstellar chemical balance, and the power of the simple methylidyne molecule as a tracer of dynamically quiet gas in the otherwise violent environment of young massive stars.
Last modified: | 13 March 2020 01.13 a.m. |
More news
-
21 November 2024
Dutch Research Agenda funding for research to improve climate policy
Michele Cucuzzella and Ming Cao are partners in the research programme ‘Behavioural Insights for Climate Policy’
-
13 November 2024
Can we live on our planet without destroying it?
How much land, water, and other resources does our lifestyle require? And how can we adapt this lifestyle to stay within the limits of what the Earth can give?
-
13 November 2024
Emergentie-onderzoek in de kosmologie ontvangt NWA-ORC-subsidie
Emergentie in de kosmologie - Het doel van het onderzoek is oa te begrijpen hoe ruimte, tijd, zwaartekracht en het universum uit bijna niets lijken te ontstaan. Meer informatie hierover in het nieuwsbericht.