Skip to ContentSkip to Navigation
About us Latest news News News articles

Bacteriocins of Streptococcus pneumoniae and its response to challenges by antimicrobial peptides

07 January 2011

PhD ceremony: Ms. A Majchrzykiewicz, 16.15 uur, Academiegebouw, Broerstraat 5, Groningen

Title: Bacteriocins of Streptococcus pneumoniae and its response to challenges by antimicrobial peptides

Promotor(s): prof. O.P. Kuipers

Faculty: Mathematics and Natural Sciences

 

The findings of Joanna Majchrzykiewicz extend the understanding of defense mechanisms of the important human pathogen, S. pneumoniae, against antimicrobial compounds. They open up exciting possibilities to produce and engineer novel bacteriocins in vivo, which might be recognized by pharmaceutical companies as potential therapeutic alternatives to antibiotics in order to treat infectious diseases. The human pathogen Streptococcus pneumoniae is one of the bacteria that are able to produce antimicrobial substances (AMPs) called bacteriocins. Bacteriocins are small proteins that inhibit the growth or kill microorganisms in the vicinity of the producing organism. A large variability of known bacteriocins is relatively well studied among bacteria, however little is known about bacteriocins of S. pneumoniae. The thesis of Joanna Majchrzykiewicz describes nine different bacteriocin-like clusters in S. pneumoniae strains. Importantly, it shows that one of the clusters can only be produced by use of a production machinery of another, not related, bacteriocin. Furthermore, it has been suggested by Majchrzykiewicz that the function of another putative bacteriocin-like clusters is related to the general nitrogen metabolism of this bacterium. In addition she identified two novel clusters for which similar function was proposed. Notably she showed that all three clusters likely form a novel regulon in S. pneumoniae. Besides that, she investigated the transcriptional response of S. pneumoniae to three AMPs, bacitracin, nisin and LL-37. It turned out that resistance to these and other AMPs in S. pneumoniae is mediated by several putative transporters, some of which have not been associated with antimicrobial resistance in this organism before.

Last modified:13 March 2020 01.12 a.m.
Share this Facebook LinkedIn
View this page in: Nederlands

More news

  • 03 April 2025

    IMChip and MimeCure in top 10 of the national Academic Startup Competition

    Prof. Tamalika Banerjee’s startup IMChip and Prof. Erik Frijlink and Dr. Luke van der Koog’s startup MimeCure have made it into the top 10 of the national Academic Startup Competition.

  • 01 April 2025

    NSC’s electoral reform plan may have unwanted consequences

    The new voting system, proposed by minister Uitermark, could jeopardize the fundamental principle of proportional representation, says Davide Grossi, Professor of Collective Decision Making and Computation at the University of Groningen

  • 01 April 2025

    'Diversity leads to better science'

    In addition to her biological research on ageing, Hannah Dugdale also studies disparities relating to diversity in science. Thanks to the latter, she is one of the two 2024 laureates of the Athena Award, an NWO prize for successful and inspiring...