Scalable algorithms for fully implicit ocean models
PhD ceremony: Mr. J. Thies, 13.15 uur, Academiegebouw, Broerstraat 5, Groningen
Title: Scalable algorithms for fully implicit ocean models
Promotor(s): prof. A.E.P. Veldman
Faculty: Mathematics and Natural Sciences
Climate research is one of the disciplines which rely most heavily on numerical simulations. Experiments are tedious because of the difficulty of scaling something as large as an ocean down to laboratory size. Observations are sporadic because research vessels are expensive and can only be at one location at a time. Satellites, on the other hand, are limited to observing the sea surface.
In this thesis we study innovative numerical techniques to make simulations of ocean flow easier. The focal point is the term ‘scalability’. We call an algorithm scalable if refining the computational grid leads to a linear increase of the required arithmetic operations. A computer program is called scalable if using more processors reduces the computing time accordingly.
The implicit approach that we propose is based on the solution of coupled systems of equations, whereas explicit models use simpler updates of the variables to get from one time step to the next. Our implicit approach can take unlimited time steps, which allows us to simulate much longer time intervals like ice ages -than explicit models can handle.
The ocean is a complex dynamical system which can be sensitive to small changes of parameters such as the temperature of the atmosphere. Traditional explicit models have to be restarted for each new scenario, whereas the implicit variant can step directly from one situation to the next, varying the parame¬ters slightly in every step (continuation). This leads to substantially increased efficiency if one wants to test many scenarios.
Last modified: | 13 March 2020 01.12 a.m. |
More news
-
01 April 2025
NSC’s electoral reform plan may have unwanted consequences
The new voting system, proposed by minister Uitermark, could jeopardize the fundamental principle of proportional representation, says Davide Grossi, Professor of Collective Decision Making and Computation at the University of Groningen
-
01 April 2025
‘AiNed’ National Growth Fund grant for speeding adoption of AI at SMEs
Professor Ming Cao receives an ‘AiNed’ Growth Fund grant of EUR 2.4 million for research that will contribute to faster adoption of AI at SMEs in the technical industry in the Netherlands.
-
01 April 2025
'Diversity leads to better science'
In addition to her biological research on ageing, Hannah Dugdale also studies disparities relating to diversity in science. Thanks to the latter, she is one of the two 2024 laureates of the Athena Award, an NWO prize for successful and inspiring...