Particle induced strand breakage in plasmid DNA
PhD ceremony: Ms. H.M. Dang, 16.15 uur, Academiegebouw, Broerstraat 5, Groningen
Thesis: Particle induced strand breakage in plasmid DNA
Promotor(s): prof. R. Hoekstra
Faculty: Mathematics and Natural Sciences
Ionizing radiation affects our daily life, for example in the form of cosmic rays, environmental radiation or during cancer therapy treatments. Different kinds of radiation behave different when they interact with matter, and in particular with biological cells. Classical radiation therapy for decades relied on the use of energetic photons or electrons for controlled cell-killing. In recent years, alternative treatments based on fast protons or heavy ions have proven their advantage for particular types of tumors. One of the main differences between the various types of radiation is how the particle energy is deposited as a function of depth. Ions have a very special depth distribution of the deposited dose, peaking at the end of the particle's track. At this Bragg peak, the relative biological effectiveness is highest i.e. the damage is maximum.
When ionizing radiation crosses a living cell, direct ionization and fragmentation of biologically relevant molecules such as DNA occurs but also indirect DNA damage due to i.e. OH radicals stemming from water radiolysis. DNA damage can be in the form of single strand breaks, double strand breaks or more complex lesions which are very difficult to repair.
In this thesis, interactions of heavy ions and protons with plasmid DNA were explored for kinetic energies corresponding to extreme regions along the Bragg-curve. Both dry plasmids and plasmids in aqueous solution were studied to investigate the relevance of direct effects. The experimental results indicate that for a given dose, at the Bragg peak DNA damage is qualitatively most severe.
Last modified: | 13 March 2020 01.14 a.m. |
More news
-
01 April 2025
NSC’s electoral reform plan may have unwanted consequences
The new voting system, proposed by minister Uitermark, could jeopardize the fundamental principle of proportional representation, says Davide Grossi, Professor of Collective Decision Making and Computation at the University of Groningen
-
01 April 2025
‘AiNed’ National Growth Fund grant for speeding adoption of AI at SMEs
Professor Ming Cao receives an ‘AiNed’ Growth Fund grant of EUR 2.4 million for research that will contribute to faster adoption of AI at SMEs in the technical industry in the Netherlands.
-
01 April 2025
'Diversity leads to better science'
In addition to her biological research on ageing, Hannah Dugdale also studies disparities relating to diversity in science. Thanks to the latter, she is one of the two 2024 laureates of the Athena Award, an NWO prize for successful and inspiring...