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1 Introduction

It is well-known that Supply and Use tables (SUTs) are the core of the System of

National Accounts, and provide the detailed picture of the entire economy. These

tables provide a thorough overview of the production process, of the use of goods and

services (commodities), and of income generated in the production process. SUTs

are building blocks of the the so-called symmetric input-output tables (SIOTs),

which together provide a powerful tool for very different types of economic analyses.

The areas that make extensive use of these datasets are, for example, environmental

analysis, globalization, international trade, productivity and efficiency, innovation

and R&D, and migration.

Although the delivery and quality of SUTs provided by different statistics com-

mittees around the world are much better now than 10-15 years ago, still the problem

of timeliness of these data remains. This has to do with the large financial expen-

ditures and human efforts required in collecting SUTs. That is why most statistical

committees of countries provide benchmark tables based on detailed surveys on usu-

ally five years interval. However, for the policy research objectives these five-year

tables are often not adequate, hence the in-between benchmark SUTs and SIOTs are

estimated. For this purpose, very different non-survey methods have been proposed

and extensively used.

The purpose of this paper is twofold. First, we present eight methods of up-

dating SUTs, four of which are less (or not) known in the literature. These less

known updating techniques are the methods of EUKLEMS (Timmer et al. 2005),

Euro (Beutel 2002, Eurostat 2008),1 Harthoorn and van Dalen (1987), and Kuroda

(1988). Other considered approaches are the well-known (G)RAS (see e.g., Leon-

tief 1941, Stone 1961, Bacharach 1970), and the family of least squares ‘distance’

functions-based mathematical programs: improved normalized squared differences

(Friedlander 1961, Huang et al. 2008), improved squared differences (Almon 1968,

Jackson and Murray 2004, Huang et al. 2008), and improved weighted squared dif-

ferences. Second, we empirically assess the relative performance of all the above

mentioned updating methods in the example of Dutch and Spanish SUTs. We

should note that all these methods are equally applicable for updating SIOTs as

well. To the best of our knowledge, this is the first attempt to perform the relative

performance test of the mentioned less known updating methods for SUTs esti-

mation. The EUKLEMS method is discussed fully for the first time in this work.

Further, Harthoorn and van Dalen’s (1987) and Kuroda’s (1988) methods, also for

1The Euro method was originally devised for updating symmetric input-output tables, but is
also used in a SUT-setting, see a report prepared by Joerg Beutel to the European Commission
(e.g., contract number 1508302007 FISC-D, April 2008). The method will be presented in detail
in this paper.
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some reason less known and rarely used in the related literature, were slightly revised

in this paper with respect to (i) considering negative elements and (ii) preserving

signs of the updated tables’ elements. The well-known RAS method is a bipropor-

tional technique that estimates a new matrix from an initial matrix by scaling row-

and column-wise the entries in the initial matrix such that it satisfies pre-specified

row and column totals of the projection table.2 RAS can handle only non-negative

matrices, but in many cases one needs to estimate a new matrix that may have nega-

tive entries as well, which is the case for SUTs updating. Generalized RAS (GRAS)

due to Günlük-Şenesen and Bates (1988) and Junius and Oosterhaven (2003) allows

also for updating matrices with negative entries, hence as a generalization of RAS

will be discussed in the next section.

It is impossible to consider all updating methods, because theoretically their

number is infinity. For example, consider an estimation technique that is based on

a (linear or nonlinear) program, which searches for the minimum ‘distance’ between

the original and a new matrix subject to certain constraints. But the definition of

‘distance’ is rather arbitrary, and one can define an infinite number of functions that

can be used as a measure of distance. However, there are some updating methods

that we deliberately do not discuss here, and the reasons are explained in what

follows. The problem of the minimum sum of cross entropies (CE) (Golan et al.

1994, Golan and Vogel 2000) is not considered for two reasons. First, it is applicable

only to semipositive matrices, but in SUTs one can always find negative entries

(for example, in the valuation adjusment and final demand matrices). Second, its

objective function is biased (see for this point Lenzen et al. 2007): CE solutions

tend to be 1/e of the original elements, where e is the base of natural logarithm;

one instead wants them to be as close as possible to the ‘base’ year table.3 The

TAU and UAT methods proposed by Snower (1990) are not applicable for updating

SUTs as they are based on the Leontief quantity and price models, hence are (only)

valid for estimating SIOTs. One, of course, can transform the updated SIOTs into

the SUTs (on the base of the so-called product or industry technology assumption),

but then a lot of information is lost, and, to our view, leads to poor estimates of

SUTs. Further, it requires substantially more information than the eight methods

analyzed in this paper. We do not consider a new variant of RAS – the so-called Cell-

corrected RAS (CRAS) proposed recently by Mı́nguez et al. (2009). The reasons are

as follows. First, CRAS at this moment can handle only non-negative matrices, and,

second, it requires the availability of rather long time-series of SIOTs, which is not

2See Lahr and de Mesnard (2004) for details on RAS (including its history), which also gives
an extensive set of references on the topic.

3See McDougall (1999) for detailed comparison of RAS and entropy-theoretic methods, who
argues that, in general, the RAS remains preferable matrix balancing technique.
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the case for many countries, especially, developing ones. Next, we did not analyze

the so-called univariate updating methods, such as Proportional Correction Method

(see e.g., Eurostat 2008, pp. 449-451) and Statistical Correction Method (Tilanus

1968). These methods ‘correct’ the original matrix only row-wise with a diagonal

matrix of correction factors in order to get the updated matrix (hence, the term

univariate). We think that such a correction is rather simple and less realistic than

the RAS method, which corrects the original matrix both row-wise and column-wise

to get the final estimate.4 A recent updating method is a multi-objective approach

(Strømman 2009), which combines two different programs by introducing one of the

objective functions as a constraint into the other program. This approach needs a

thorough analysis (e.g., dealing with negative elements), hence is not analyzed in

this paper either.

The literature on evaluating non-survey methods is rather large. Some early

work include Allen and Gossling (1975), Davis et al. (1977), Parikh (1979), Butter-

field and Mules (1980), Günlük-Şenesen and Bates (1988) and St Louis (1989). We

should mention that the RAS procedure was extensively used in other fields, such

as demography (see e.g., Rees 1979, Schoen and Jonsson 2003), stochastic modeling

(see e.g., Mari Bhat 1990), political studies (see e.g., Johnston and Pattie 1993),

and transportation research (see e.g., Carey et al. 1981). The ‘novelty’ of this paper

is that we also consider methods that, to our knowledge, have never been evaluated

before in such a comparative setting, and implement the performance test on SUTs

rather than SIOTs.

The rest of this paper is organized as follows. In Section 2 we present the above

mentioned eight updating methods. Their empirical evaluation is carried out in

Section 3 using the Dutch and Spanish SUTs. Some concluding remarks are given

in Section 4.

2 Review of the updating methods

In this section we provide the description of different methods of updating Supply

and Use tables (SUTs) and input-output (IO) tables. The attempt was to employ the

notations used in the IO literature as much as possible. Adopting usual convention,

matrices are given in bold, capital letters; vectors in bold, lower case letters; and

scalars in italicized lower case letters. Vectors are columns by definition, thus row

4The three-stage RAS (TRAS) proposed by Gilchrist and St. Louis (1999) extends the original
RAS by including additional information on the individual cells, and row and column totals of
a submatrix of the original table. This variation of RAS is not considered here, since it is, in
general, found that introduction of accurate exogenous information into RAS (besides row and
column sums of the projection table) improves the resulting estimates (see e.g., de Mesnard and
Miller 2006).
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vectors are obtained by transposition, indicated by a prime. x̂ denotes the n × n

diagonal matrix with the elements of the vector x on its main diagonal and zero

otherwise.

2.1 EUKLEMS method

In what follows we present in detail for the first time the method of estimating time

series of SUTs in current prices that is partially discussed in Timmer et al. (2005),

which we refer to as the EUKLEMS’s method.

Step 1: Data requirements. For the benchmark year 0 we need the following data:

1. V′
0 – Supply matrix at basic price with dimension of commodity by industry

(i.e., com× ind). Note that its transpose V is known as the Make matrix;

2. U0 – Use matrix at purchase price (of dimension com× ind);

3. Y0 – Final demand matrix at purchase price (com× f , where f is the number

of final demand categories)

4. str0 – trade margin vector (com× 1);

5. stt0 – transportation margin vector (com× 1);

6. svat0 – VAT (non-deductable) vector (com× 1);

7. snt0 – the com× 1 vector of taxes on products net of subsidies.

For each projection period t the following data are needed:

8. xt – total industry output at basic price (ind× 1);

9. ut – total industry intermediate inputs at purchase price (ind× 1);

10. yt – total of final demand uses at purchase price (f × 1);

11. mt – total imports of all commodities (at cif) (only if imports by commodity

is not available);

12. strt – total value of trade margins;

13. sttt – total of transportation margins;

14. svatt – total value of VAT (if available);

15. sntt – total net taxes on products (if available).

Note that from the basic accounting equations it follows that xt = Vtı and ut = U′
tı,

where ı is the summation vector of ones of appropriate dimension.

A general remark applicable to all methods considered in this paper is related to

the use of benchmark SUTs in estimating new tables for some projection year(s). For

interpolation, when data is available both for the beginning and end of a projection

period, both benchmark data should be used. Assume we need to project SUTs

for k years inbetween the start and ending periods with available SUTs. Then the

benchmark data maybe taken to be simply as the arithmetic average of both available

tables, for example, V′
0 = (1/2)(V′

start + V′
end). However, since in some cases k can

be large, it is better to use some weighting scheme that gives more weight to the
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closer available data for the projection time t ∈ (0, k + 1). Therefore, for example,

the Supply matrix as the variable ‘benchmark’ depending on the projection year t

can be written as V′
0 = k+1−t

k+1
V′
start +

t
k+1

V′
end. Similar variable benchmarks should

be used for the base year Use tables and any other necessary benchmark table.

The reason for such a weighting scheme is that structural change can be, at least,

partially be taken into account by using variable benchmark tables. Note that if

k = 1 (i.e., projection of only one year SUTs is required), the base year data boils

down to a simple arithmetic average of the two benchmarks as given earlier.

Step 2: Generating Supply tables. Compute the industry output proportions (or,

equivalently, product mix ) matrix for the base year as

C0 = V′
0x̂

−1
0 ,

where x0 = V0ı. Its typical element cij denotes the fraction of total industry j’s

output that is in the form of commodity i. The EUKLEMS method assumes that the

product mix matrix C0 is valid for the entire projection period. Thus, the Supply

matrice at time t is

V′
t = C0x̂t. (1)

Note that these estimated Supply matrices are consistent since ı′V′
t = ı′C0x̂t =

ı′V′
0x̂

−1
0 x̂t = x′t. If commodity imports vector is not available for the projection

period, they are constructed as follows. Let m0 be the vector of imports in the base

year, then the projected imports vector is derived simply by applying the share of

commodity imports compositions of the base year to the available aggregate imports

value (data 11 in Step 1), i.e.,

mt =
mt

ı′m0

m0.

Consequently, the time series of domestic commodity output and gross commodity

output vectors at basic prices are found, respectively, as follows

qdt = V′
tı,

qt = qdt + mt.

Step 3: Generating gross commodity outputs at purchase prices. The initial guess for

the vectors of margins and taxes are constructed using their corresponding rates from

the benchmark year. These rates are taken relative to the corresponding outputs at

basic prices, i.e.,

r̂k0 = ŝk0q̂
−1
0 for k = tr, tt, vat, nt,
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where, for example, rtri,0 = stri,0/q
tr
i,0. The EUKLEMS method assumes that r̂0 is valid

for the projection period, thus the initial guess, denoted by the subscript (1), of the

trade and transportation margins, and VAT and other taxes is found as

skt(1) = r̂0qt for k = tr, tt, vat, nt. (2)

The totals of these estimated margins and taxes have to be consistent with their

corresponding actual totals. Hence, given the time series of total margins and taxes

(data 12-15 in step 1), the following normalization is used

skt =
skt

ı′skt(1)

skt(1) for k = tr, tt, vat, nt. (3)

If the totals of taxes are not available, their initial estimates (2) are taken as the

final estimates. The time series of the gross commodity outputs at purchase price

(pp) is then generated as

qppt = qt + strt + sttt + svatt + sntt .

Step 4: Generating Use table at purchase price. Simple correction method is used to

equate supply and use of each commodity. The commodity growth rates are given

by the diagonal matrix

ĝt = q̂ppt (q̂pp0 )−1.

Denote the com × f final demand matrix by Y. The initial guess of the Use table

at time t is

[Ut(1),Yt(1)] = ĝt[U0,Y0].

In general, it is the case that ı′[Ut(1),Yt(1)] 6= [u′t,y
′
t], that is, the total estimated

intermediate and final uses are not equal to their actual totals (data 9-10 in step 1).

Thus, normalization is needed so that the estimated Use table becomes consistent

with the totals of actual intermediate and final uses. This is implemented as follows

[Ut,Yt] = [Ut(1),Yt(1)] ̂[ut,yt] ̂[ut(1),yt(1)]
−1

, (4)

thus ı′[Ut,Yt] = ı′[Ut(1),Yt(1)] ̂[ut,yt] ̂[ut(1),yt(1)]
−1

= [u′t(1),y
′
t(1)]

̂[ut(1),yt(1)]
−1 ̂[ut,yt] =

[u′t,y
′
t].

5

It is, however, very important to note that the final demand matrix excludes

the column of changes in inventories and valuables, which is considered as a residual

category in order to guarantee the consistency of the Supply and Use tables. That

5Note that steps (9)-(11) are similar to the first two steps in a RAS iteration procedure.
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is, the vector of changes in inventories will be taken as the difference between total

supply by product at purchase price derived in Step 3 and the sum of the interme-

diate and final uses by product (that excluded changes in inventories and valuables

during the projection).

Step 5: Generating Use table at basic price. To transform the Use table at purchase

price in (4) from Step 4 into basic prices, we need five valuation tables, namely, the

matrices of: wholesale trade margins (WTR), retail trade margins (RTR), motor

trade margins (MTR), transportation margins (TTM), and taxes net of subsidies

margins (TXM). These matrices are found using the projected margins from (3).

First, the following rates are defined:

ĝkt = ŝkt (q̂
pp
t )−1 for k = wtr,mtr, tt, tx and ĝrtrt = ŝrtrt f̂−1

t ,

where ft = Ytı is the final commodity demand vector at purchase prices. The

reason for having separate rate for RTR is that retail trade is mainly used by the

final demand categories, and only a minor part of it is due to the intermediate use.

These rates are then applied row-wise to the projected Use tables at purchase prices

in order to get the desired margins matrices. For example, the WTR and RTR

matrices are estimated as

WTRt = ĝwtrt [Ut,Yt], RTRt = ĝrtrt Yt.

Other required matrices are estimated similar to the WTR projection. These are

used to obtain the Use tables at basic prices as

[Ut,Yt]
bp = [Ut,Yt]−WTRt −RTRt −MTRt − TTMt − TXMt. (5)

Note that the resulting Use table (5) will be consistent with the Supply matrix at

basic prices in (1), since the vectors of margins and taxes by product (3) are taken

from the Supply table projection.

2.2 Euro method

The Euro method was developed by Joerg Beutel (see e.g., Eurostat 2008, Chapter

14).6 The distinguishing feature of this method is that the estimated Supply and

Use tabes are based on macroeconomic forecasts of the growth rates of: (i) value

added of industries, (ii) total final demand uses, and (iii) total imports. The method

uses these official forecasts as exogenous input, and replicates them in the derived

6The SUT variant of the Euro method is given in different reports prepared by Joerg Beutel to
the European Commission (e.g., contract number 150830-2007 FISC-D, April 2008).
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SUTs, whose projection is based on two important assumptions. First, the shares of

industries in the production of commodities remain constant, and second, the con-

stant input coefficients (in each iteration) determine the relations of all commodity

inputs to production of industries. In what follows we present the basics of the Euro

method.

To implement the Euro method, it is required that the intermediate and final

use tables are distinguished between the domestic and imported uses. Thus, the

original base year SUTs consist of the following components all expressed at basic

prices:

1. Ud
0 – domestic intermediate Use matrix (com× ind),

2. Um
0 – imported intermediate Use matrix (com× ind),

3. Yd
0 – domestic final demand matrix (com× f),

4. Ym
0 – final demand matrix of imports (com× f),

5. V0 – make matrix (ind× com),

6. v0 – the vector of total value added of industries (ind× 1).

Further, the following macroeconomic forecasts for the projection year t are needed:

7. gv
t – growth rates of the value added of industries (ind× 1),

8. gy
t – growth rates of the totals of the final demand categories (f × 1), and

9. gmt – growth rate of total imports.

The data requirements for the projection year(s) are equivalent with the availability

of the vectors of sectoral value-added, vt, of totals of final demand categories, yt,

and aggregate value of imports, mt.

It is obvious that the base year commodity outputs and imports vectors are

equal to (recall that ı is the summation vector of ones of appropriate dimension)

qd0 = Ud
0ı + Yd

0ı = V′
0ı, and m0 = Um

0 ı + Ym
0 ı.

The market share (or, commodity output proportions) matrix of the base year is

given by

D0 = V0(q̂
d
0)
−1,

whose typical element dij denotes the fraction of total commodity j output that is

produced by industry i. It is assumed that the market share matrix is constant,

thus for all industries and products in the projection years it is assumed that the

share of industry i in the production of commodity j remains fixed.

Each iteration of the Euro method consists of two steps. The first step of the

first iteration defines domestic and imported intermediate and final uses, the vector
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of value added, and the make matrix of the projection year t, respectively, as follows

Ud
t(1) = 0.5× (ĝv

t U
d
0 + Ud

0ĝ
v
t ),

Um
t(1) = 0.5× (ĝv

t U
m
0 + Um

0 ĝv
t ),

Yd
t(1) = 0.5× (ĝv

t Y
d
0 + Yd

0ĝ
y
t ),

Ym
t(1) = 0.5× (ĝv

t Y
m
0 + Ym

0 ĝy
t ),

vt(1) = ĝv
t v0,

Vt(1) = D0q̂
d
t(1),

(6)

where qdt(1) = Ud
t(1)ı+Yd

t(1)ı. Note that the first four equations in (6) require that the

number of industries and the number of commodities have to be equal, otherwise, for

example, ĝv
t U

d
0 is not defined. Thus, even if the Euro method distinguishes between

the products and industries, it does not allow to estimate rectangular SUTs.

The total industry outputs and inputs are not equal after this first step, i.e.,

x′out,t(1) = ı′V′
t(1) 6= ı′(Ud

t(1) + Um
t(1)) + v′t(1) = x′inp,t(1). To make the derived SUT

consistent, it is assumed that the domestic and imported input structures of indus-

tries and the totals of commodities’ final uses from the first step are valid. Given

this assumption, the Euro method uses the so-called fixed commodity sales structure

model that determines the consistent output and input levels of industries (Eurostat

2008, Model D, p. 351). Thus, in the second step the consistent industry outputs

are derived from the equation

xt(2) = (I−D0B
d
t(1))

−1D0f
d
t(1), (7)

where the domestic input structure of industries is given by Bd
t(1) = Ud

t(1)(x̂inp,t(1))
−1

and the vector of final demand by product is fdt(1) = Yd
t(1)ı. Using the imported

input structure of industries given by Bm
t(1) = Um

t(1)(x̂inp,t(1))
−1 and (7), one can

easily derive the consistent SUTs components of the first iteration as follows

Ud
t(2) = Bd

t(1)x̂t(2),

Um
t(2) = Bm

t(1)x̂t(2),

Yd
t(2) = Yd

t(1),

Ym
t(2) = Ym

t(1),

v′t(2) = x′t(2) − ı′(Ud
t(2) + Um

t(2)),

Vt(2) = D0q̂
d
t(2),

(8)

where qdt(2) = Ud
t(2)ı + Yd

t(2)ı. This second step ensures consistency of the sectoral

outputs and inputs, and commodity supply and demand.
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Deviation between the macroeconomic forecasts and the above projection results

is defined as dev = (forecasted growth rates)/(projected growht rates) of ind +

f + 2 variables, which are value added of industries, final uses of f categories, total

value added, and total imports. The growth rates used in (6) are then adjusted in

an iterative procedure in order to make the difference between the macroeconomic

forecasts and the projected growth rates minimal (less than 1% or even much lower).

The observed deviations are used to correct the growth rates gv
t and gy

t employed

in (6) according to some rule. This should ensure that if the model overestimates

(underestimates) the macroeconomic forecasts, the corresponding growth rates are

decreased (increased). For such a purpose the so-called adjustment function of type

B is used, according to which the correction factor of variable k, ck, is defined as

follows

ck =

1 + (∆k × 100)ε/100 if ∆k > 0,

1− (−∆k × 100)ε/100 if ∆k < 0,
(9)

where ∆k = devk − 1 and ε is the adjustment elasticity that is usually set at 0.9.

Then the first step of the second iteration computes the projected SUTs components

as follows (compare to (6))

Ud
t(1) = 0.5× (ĝdtU

d
0 + Ud

0ĝ
d
t ),

Um
t(1) = 0.5× (ĝmt Um

0 + Um
0 ĝdt ),

Yd
t(1) = 0.5× (ĝdtY

d
0 + Yd

0ĝ
y
t ),

Ym
t(1) = 0.5× (ĝmt Ym

0 + Ym
0 ĝyt ),

vt(1) = ĝdtv0,

Vt(1) = D0q̂
d
t(1),

(10)

where the row and column growth rates adjustment multipliers are ĝdt = ĉvĝv
t (cvi

is the correction factor corresponding to the value added of industry i), ĝmt = cmĝv
t

(cm is the correction factor corresponding to total imports), and ĝyt = ĉyĝv
t (cyf is

the correction factor of the final demand category f).

As was the case with step 1 of the first iteration, the results in (10) do not ensure

the equality of industry outputs and inputs. The consistent outputs and inputs of

industries are again found using the fixed commodity sales structure model given

in (7), which are then used to derive the consistent SUTs of the second iteration

in exactly similar way as defined in (8). However, note that now the domestic

and imported input structure matrices are derived from the outcomes of the first

step of the second iteration. As a result one obtains the new deviation vector of

sectoral value added, final demand categories and total imports, which quantifies

the difference of the projected growth rates from the macroeconomic forecasts. If
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the difference of the growth rates (of sectoral value added, totals of final demand

categories, total value added, and total imports) are acceptable (say, less that 1%),

the resulting SUT is the final outcome of the Euro projection. Otherwise, the

steps of the second iteration are repeated until the projected variables resemble

(closely or even perfectly) those of the macroeconomic forecasts. It is important

to note that each such subsequent iteration begins with computing new correction

factors, which are then multiplied by the row and column growth rates adjustment

multipliers from the previous iteration in order to obtain the corresponding new

row and column growth rates adjustment multipliers. For example, the row growth

rates adjustment multipliers of domestic uses in iteration iter + 1 are the diagonal

elements of the matrix ĝdt,iter+1 = ĉviter+1ĝ
d
t,iter for all iterations iter ≥ 2. The last

important, to our view, point concerning Euro method is that its convergence is not

always guaranteed. This is in fact expectable, since we do not see any reason from

theoretical perspective for its convergence. However, there exist a practical way out

of this computative instability problem and it is increasing (slightly) the value of

the used tolerance level until convergence can be obtained.

2.3 Generalized RAS

The well-known RAS method, which balances a non-negative matrix to prescribed

row and column totals, is widely used in updating input-output (IO) tables.7 Its

generalization of estimating a matrix that contains both positive and negative en-

tries was first proposed by Günlük-Şenesen and Bates (1988), and later re-discovered

by Junius and Oosterhaven (2003) who labeled it as a generalized RAS (GRAS) ap-

proach. In fact, Günlük-Şenesen and Bates (1988) named the method as a corrected

RAS method, whose work for some reason was largely unknown, at least, in the

recent literature on updating IO tables.8 The GRAS method presented in Junius

and Oosterhaven (2003) was revised by Lenzen et al. (2007) who corrected its biased

objective function. However, this correction does not apply to the work of Günlük-

Şenesen and Bates (1988) because they set the underlying minimization problem

such that it accounts for the bias in the RAS objective function (namely, the row

and column constraints with their respective multipliers are taken under the loga-

rithm). We will briefly present the method, while for details the reader is referred

to the original sources.

7The details of the RAS procedure is thoroughly discussed in Miller and Blair (2009, Chapter
7), which also gives an extensive list of references on the topic.

8It seems fair to use the original name of the method as a corrected RAS (CRAS, C for corrected)
in order to give credit to Günlük-Şenesen and Bates (1988). However, now there is a CRAS (cell-
corrected RAS) approach due to Mı́nguez et al. (2009), hence we follow the current literature and
use the term GRAS.
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Let A be the m× n matrix, not necessarily non-negative, with row and column

sums of, respectively, u0 = Aı and v0 = A′ı. Given ‘new’ row and column sums u

and v, the problem is finding a ‘new’ matrix X that is as close as possible to the

original matrix A and satisfies Xı = u and X′ı = v. Define the ratio of the ‘new’

to the ‘old’ entries by zij ≡ xij

aij
whenever aij 6= 0. For aij = 0, set zij = 1. The

appropriate objective function that evaluates the distance between A and X in the

GRAS method is given in Huang et al. (2008).9 So the problem is

min
zij

f(Z) =
∑
i

∑
j

|aij| (zij ln(zij/e) + 1)

such that∑
j

aijzij = ui for all i = 1, . . . ,m,∑
i

aijzij = vj for all j = 1, . . . , n,

(11)

where |aij| is the absolute value of aij and e is the base of natural logarithm. The

associated Lagrangean is

L(Z,λ, τ ) =
∑

(i,j)∈P

aij (zij ln(zij/e) + 1)−
∑

(i,j)∈N

aij (zij ln(zij/e) + 1)

+
∑
i

λi

(
ui −

∑
j

aijzij

)
+

∑
j

τj

(
vj −

∑
i

aijzij

)
,

where P (resp. N) is the set of indices (i, j) for which aij ≥ 0 (resp. aij < 0), and λi

and τj are the Lagrange multipliers. The first-order conditions can be easily derived

as

zij = risj for aij ≥ 0,

zij = r−1
i s−1

j for aij < 0,

where ri = eλi and sj = eτj , thus it always holds that zij > 0. Note that when

aij = 0, then it xij = 0 as well since then zij = 1. From the above optimal conditions

it follows that “... the procedure RAS is appropriate for positive elements, but needs

to be replaced by (1/R)A(1/S) for negative elements” (Günlük-Şenesen and Bates

9Introducing this function, Huang et al. (2008) call the method as the “Improved GRAS”. We
should, however, note that the result of this optimization gives exactly the same outcome as in
Lenzen et al. (2007), who use f(Z) =

∑
i,j |aij |zij ln(zij/e) instead. The only ‘problem’ with the

last function is that for zij = 1, i.e., when the initial matrix trivially satisfies the prescribed row
and column sums, the function is negative, f(Z) =

∑
i,j |aij | ln(1/e) =

∑
i,j |aij |(0 − 1) < 0. Its

modified version gives the function value equal to zero as it should be. However, this adjustment
does not play any role in determining the optimal Z.
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1988, p. 476). Employing the first-order conditions with the row and column totals

constraints, one can easily see that the diagonal matrices r̂ and ŝ solve the following

system of nonlinear equations(
r̂Pŝ− r̂−1Nŝ−1

)
ı = u, (12)

ı′
(
r̂Pŝ− r̂−1Nŝ−1

)
= v′, (13)

where the matrix P (resp. N) contains nonnegative (resp. the absolute value of

negative) elements of the original matrix A, that is, A = P −N. The solution of

the system (12)-(13) is derived iteratively, using a formula for the positive root of the

second-order equation (see for details Junius and Oosterhaven 2003). Furthermore,

since zij > 0, the signs of all the elements in the original matrix A will be preserved

in the projected matrix X. Notice that when A is non-negative, then P = A and

thus X = r̂Aŝ, which is exactly how the traditional RAS method works.

As in the original RAS approach, the row and column multipliers have the

following economic meaning. Multipliers in r̂ are interpreted as the “substitution

factors” because they measure the degree to which the input has replaced or has

been replaced over time by other inputs. The column multipliers in ŝ, on the other

hand, are known as the “fabrication factors” since they measure the extent to which

the output in each sector has absorbed over time more or less the intermediate inputs

vs. primary inputs. In our empirical application of GRAS for updating SUTs, we

use the iterative algorithm proposed by Lenzen et al. (2007, p. 465).

2.4 Improved normalized squared differences

Friedlander (1961) proposed to use the normalized squared differences as an objective

function in order to estimate a matrix with given row and column totals, which has

been suggested by Lecomber (1975) as a useful technique for updating IO tables.

The objective function is

f =
∑
i

∑
j

(xij − aij)
2

aij
, (14)

where aij > 0. Note that smaller aijs have higher contribution to the function (14),

hence minimization of this function implies greater penalty on the change of small

elements. This means that an updating procedure with the objective (14) results in

the matrix whose changes are more concentrated in the larger entries. Huang et al.

(2008) rewrite (14) with respect to zij =
xij

aij
that also allows for non-positive entries

in the original matrix A as

f(Z) =
∑
i

∑
j

|aij|(zij − 1)2, (15)
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which they call as an improved normalized squared differences (INSD).

The INSD function is used together with the penalty function of the form
M
2

∑
i

∑
j |aij|[min(0, zij)]

2, where M > 0 is the penalty number that prevents zij

from being significantly negative. If there is zij < 0, then for M →∞ this element

becomes virtually zero, hence practically the inequality zij ≥ 0 is satisfied. The last

inequality guarantees preserving the sign of each entry in X as in A. Using the

constraints as in the GRAS problem (11), the associated Lagrangian is

L(Z,λ, τ ) =
1

2

∑
i

∑
j

|aij|
(
(zij − 1)2 +M [min(0, zij)]

2
)

+
∑
i

λi

(
ui −

∑
j

aijzij

)
+

∑
j

τj

(
vj −

∑
i

aijzij

)
.

The optimality condition ∂L/∂zij = 0 yields

zij +M min(0, zij) = 1 +
aij
|aij|

(λi + τj),

thus

zij =


1 if aij = 0,

1 +
aij

|aij |(λi + τj) if 1 +
aij

|aij |(λi + τj) ≥ 0,

1
1+M

[
1 +

aij

|aij |(λi + τj)
]

otherwise.

(16)

Next, using the row and column constraints of X it can be easily shown that the

Lagrange multipliers are equal to (see for details Huang et al. 2008, pp. 116-118)

λi =
1∑
j |aij|

[
ui −

∑
j

aij +
∑
j

{
Maij min(0, zij)− τj|aij|

}]
, (17)

τj =
1∑
i |aij|

[
vj −

∑
i

aij +
∑
i

{
Maij min(0, zij)− λi|aij|

}]
. (18)

Equations (16)-(18) are used in an iterative procedure to obtain the final solution

Z. We initialize Z0 = U and λ0 = τ0 = 0, where U is the m × n matrix of ones

and 0 is the null vector. Then at step t = 1, 2, . . . , K using (17)-(18) we obtain λt

that is used to derive τt, which are then employed to obtain Zt from (16). This

process continues until for some finite K (if the solution exists) λK − λK−1 < εı

and τK − τK−1 < εı for sufficiently small ε > 0. The final solution Z is derived

using the last step multipliers λK and τK , from which the matrix X is obtained via

xij = zijaij.

As observed by Huang et al. (2008), the (improved) GRAS function is an ap-

proximate expression of the INSD function: if we take the first-order Taylor series
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of ln(zij) around zij = 1, the GRAS function boils down to the INSD objective,

i.e., |aij| (zij ln(zij/e) + 1) ≈ |aij|(0 + zij(zij − 2) + 1) = |aij|(zij − 1)2.10 Because of

this closeness and the fact that in GRAS it always holds that zij > 0, the “INSD is

more likely to preserve the signs of entries than other non-biproportional methods,

similar to [GRAS]” (Huang et al. 2008, p. 121).

2.5 Improved squared differences

Another often used objective for updating IO matrices is the function of squared

differences of Almon (1968)

f =
∑
i

∑
j

(xij − aij)
2. (19)

Huang et al. (2008) rewrite (19) in terms of zij to derive the improved squared

differences (ISD) function

f(Z) =
∑
i

∑
j

a2
ij(zij − 1)2, (20)

which has the same form as the sign preserving squared differences in Jackson and

Murray (2004). Again to ‘insure’ non-negativity of zij, the penalty function of the

form M
2

∑
i

∑
j a

2
ij[min(0, zij)]

2 is used together with the ISD function in (20). This

function subject to the usual prescribed row and column constraints in (11) yields

the Lagrangian

L(Z,λ, τ ) =
1

2

∑
i

∑
j

a2
ij

(
(zij − 1)2 +M [min(0, zij)]

2
)

+
∑
i

λi

(
ui −

∑
j

aijzij

)
+

∑
j

τj

(
vj −

∑
i

aijzij

)
.

The optimality condition ∂L/∂zij = 0 gives

zij +M min(0, zij) = 1 +
λi + τj
aij

,

thus

zij =


1 if aij = 0,

1 +
λi+τj
aij

if 1 +
λi+τj
aij

≥ 0,

1
1+M

[
1 +

λi+τj
aij

]
otherwise.

(21)

10An equivalent closeness between the normalized squared differences and RAS outcomes have
been already mentioned in Harrigan and Buchanan (1984, p. 341).
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Using the constraints
∑

j xij = ui and
∑

i xij = vj together with the above optimal-

ity condition (when aij 6= 0) yields

λi =
1∑

j δ(aij)

[
ui −

∑
j

aij +
∑
j

{
Maij min(0, zij)− τjδ(aij)

}]
, (22)

τj =
1∑

i δ(aij)

[
vj −

∑
i

aij +
∑
i

{
Maij min(0, zij)− λiδ(aij)

}]
, (23)

where δ(aij) = 1 if aij 6= 0, and δ(aij) = 0 otherwise. The iterative algorithm is

similar to the one when the objective of the constrained minimization problem is

the INSD and is described in the previous section.

2.6 Improved weighted squared differences

The errors in the squared differences objective (19) are equally weighted despite the

size of the original entries of A. Some analysts would argue that large coefficients

are the outcome of more permanent and stronger linkages, and thus are more stable

than small coefficients (see e.g., Hinojosa 1978). The squared differences version of

the weighted absolute deviation measure in Lahr (2001) can be written as (see also

Pavia et al. 2009)

f =
∑
i

∑
j

aij(xij − aij)
2, (24)

where aij > 0. Thus when the squared differences are weighted by the corresponding

original coefficients, in contrast to the normalized squared differences (14), changes

in the larger entries are penalized more in the minimization of (24). Hence, it is

expected that changes in the updated matrix are more concentrated in the smaller

entries.

To allow also for negative entries, rewrite (24) with respect to zij =
xij

aij
as

f(Z) =
∑
i

∑
j

|a3
ij|(zij − 1)2, (25)

which can be called (in conjunction with ISD and INSD) as the improved weighted

squared differences (IWSD). Again for the sign preservation, we use now the penalty

function M
2

∑
i

∑
j |a3

ij|[min(0, zij)]
2, so that the associated Lagrangian is

L(Z,λ, τ ) =
1

2

∑
i

∑
j

|a3
ij|

(
(zij − 1)2 +M [min(0, zij)]

2
)

+
∑
i

λi

(
ui −

∑
j

aijzij

)
+

∑
j

τj

(
vj −

∑
i

aijzij

)
.
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The optimality condition ∂L/∂zij = 0 is zij +M min(0, zij) = 1 +
aij(λi+τj)

|a3
ij |

, thus

zij =


1 if aij = 0,

1 +
aij(λi+τj)

|a3
ij |

if 1 +
aij(λi+τj)

|a3
ij |

≥ 0,

1
1+M

[
1 +

aij(λi+τj)

|a3
ij |

]
otherwise.

(26)

Employing the row and column constraints of X it can be easily shown that the

Lagrange multipliers are

λi =
1∑

j(|aij|−1)

[
ui −

∑
j

aij +
∑
j

{
Maij min(0, zij)−

τj
|aij|

}]
, (27)

τj =
1∑

i(|aij|−1)

[
vj −

∑
i

aij +
∑
i

{
Maij min(0, zij)−

λi
|aij|

}]
, (28)

where we define 1
|aij | = 1 for aij = 0. Equations (26)-(28) are used in an iterative

algorithm (similar to the INSD algorithm described in Section 2.4) to derive the

final solution X.

2.7 Harthoorn and van Dalen’s method

A more general form of the least squares ‘distance’ approach was proposed by

Harthoorn and van Dalen (1987). They set the matrix updating problem by in-

troducing factors fij for each entry of the original m×n matrix A which determine

the updated matrix X as follows:

min
fij

f(F) =
∑
i

∑
j

(fijaij − aij)
2/gij

such that∑
j

fijaij = ui for all i = 1, . . . ,m,∑
i

fijaij = vj for all j = 1, . . . , n,

(29)

where gij is the known relative confidence of element aij. Since this problem does

not guarantee sign-preservation (some fij can be negative), similar to the previous

problems, we introduce the penalty function M
2

∑
i

∑
j

a2
ij

gij
[min(0, fij)]

2. Thus, the

Lagrangian becomes
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L(F,λ, τ ) =
1

2

∑
i

∑
j

a2
ij

gij

(
(fij − 1)2 +M [min(0, fij)]

2
)

+
∑
i

λi

(
ui −

∑
j

fijaij

)
+

∑
j

τj

(
vj −

∑
i

fijaij

)
.

The optimality condition ∂L/∂fij = 0 gives

fij +M min(0, fij) = 1 +
gij(λi + τj)

aij
,

thus

fij =


1 if aij = 0,

1 +
gij(λi+τj)

aij
if 1 +

gij(λi+τj)

aij
≥ 0,

1
1+M

[
1 +

gij(λi+τj)

aij

]
otherwise.

(30)

Note that in contrast to the least squares objectives, we could have defined fij = 0

for aij = 0 because from the outset it was not defined to be the ratio of the new and

old entries like zij.

Using the constraints from (29) together with the above optimality condition

gives

λi =
1∑
j gij

[
ui −

∑
j

aij +
∑
j

{
Maij min(0, zij)− gijτj

}]
, (31)

τj =
1∑
i gij

[
vj −

∑
i

aij +
∑
i

{
Maij min(0, zij)− gijλi

}]
. (32)

If the weights are chosen such that gij = 1 for all i and all j when aij 6= 0, and

zero otherwise, then it is easy to see that the ISD becomes a particular case of the

Harthoorn and van Dalen’s (HvD) method (compare (30)-(32) to (21)-(23)). The

authors call ‘additive adjustment’ the case when gij = 1 for all i and all j (also for

aij = 0). Harthoorn and van Dalen (1987) suggest two other specifications of the

confidence intervals gij: (i) “[i]f the matrix to be adjusted in is based on a relatively

small unbiased sample, it often turns out that the squares of the elements, a2
ij, should

be taken”, and (ii) “[i]t is not unusual for elements with larger values to be estimated

more accurately in the compilation of input-output tables. This varying accuracy

could be expressed by choosing the elements themselves as weights. As this would

lead to an adjustment in the wrong direction in the case of negative elements, the

absolute values |aij| should be taken” (pp. 11-12). Note that with gij = |aij|, the

objective in (29) boils down to the INSD function (15), hence INSD is a particular
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case of the HvD method. Equations (30)-(32) are used in an iterative algorithm,

similar to the INSD algorithm described in Section 2.4, to derive at the final solution

of X.

2.8 Kuroda’s method

Kuroda (1988) proposed the following objective function in updating IO matrices

f =
1

2

∑
i

∑
j

[(xij
ui
− rij

)2

wij +
(xij
vj
− cij

)2

vij

]
, (33)

where the shares of each element of the original matrix in the row and column sums

are rij =
aij

u0
i

and cij =
aij

v0j
(superscript 0 refers to the base year, i.e., u0

i =
∑

j aij

and v0
j =

∑
i aij), and wij and vij are arbitrary sets of positive weights. Further,

from (33) follows that u0
i , ui, v

0
j and vj are assumed to be nonzero for all i and all

j. We rewrite (33) in terms of zij =
xij

aij
as follows

f(Z) =
1

2

∑
i

∑
j

a2
ij

[(zij
ui
− 1

u0
i

)2

wij +
(zij
vj
− 1

v0
j

)2

vij

]
. (34)

Note that the ISD function in (20) is a particular case of (34) with wij = vij = ui =

u0
i = vi = v0

i = 1 for all i and all j. For simplicity we denote

sij ≡
wij
u2
i

+
vij
v2
j

> 0,

and note that with Kuroda’s method it must be the case that the row and column

sums of the matrices A and X are nonzero.

Similar to Huang et al. (2008), we use the penalty function together with (34)

in order to prevent zij from being significantly negative, which in current setting

has the form M
2

∑
i

∑
j a

2
ijsij[min(0, zij)]

2. Considering also the row and column

constraints in (11), the associated Lagrangian becomes

L(Z,λ, τ ) =
1

2

∑
i

∑
j

a2
ij

[(zij
ui
− 1

u0
i

)2

wij +
(zij
vj
− 1

v0
j

)2

vij +Msij[min(0, zij)]
2

]
+

∑
i

λi

(
ui −

∑
j

aijzij

)
+

∑
j

τj

(
vj −

∑
i

aijzij

)
.

The optimality condition ∂L/∂zij = 0 gives

zij +M min(0, zij) =
1

sij

(
s0
ij +

λi + τj
aij

)
,
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where s0
ij ≡

wij

u0
i ui

+
vij

v0j vj
. Thus,

zij =


1 if aij = 0,

1
sij

(
s0
ij +

λi+τj
aij

)
if 1

sij

(
s0
ij +

λi+τj
aij

)
≥ 0,

1
(1+M)sij

(
s0
ij +

λi+τj
aij

)
otherwise.

(35)

Using the constraints
∑

j aijzij = ui and
∑

i aijxij = vj together with the above

first-order conditions yields

λi =
1∑
j s

−1
ij

[
ui −

∑
j

aij
s0
ij

sij
+

∑
j

{
Maij min(0, zij)−

τj
sij

}]
, (36)

τj =
1∑
i s

−1
ij

[
vj −

∑
i

aij
s0
ij

sij
+

∑
i

{
Maij min(0, zij)−

λi
sij

}]
. (37)

Equations (35)-(37) are used in an iterative process to obtain the final solution Z

and X. The iterative algorithm is similar to those when the ISND and ISD functions

are the objectives in the constrained minimization problem (11) (see Section 2.4).

Note that for the computation of (35)-(37), one needs to choose the weights wij

and vij (that in turn determine the values of sij and s0
ij). One approach is to weight

all errors equally, i.e., set wij = vij = 1 for all i and all j. Kuroda (1988) proposes

“the equal percentage change” weighting scheme of the form

wij =
1

r2
ij

, vij =
1

c2ij
. (38)

Wilcoxen (1989), on the other hand, for the simplification of obtained expressions

also considers the following weights

wij =
u2
i

2
, vij =

v2
j

2
, (39)

which result in sij = 1 for all i and all j.

If one uses (38), the objective function (33) becomes

f =
1

2

∑
i

∑
j

[(xij/ui
rij

− 1
)2

+
(xij/vj

cij
− 1

)2
]
, (40)

which simply represents the percentage changes in the coefficients of the new and

original matrices. Notice that Kuroda’s weights in (38) imply that the matrix A to

be updated should not contain zero elements, otherwise the weights are not defined.

In our setting with Kuroda’s weights we do allow both for zero and negative elements
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Table 1: Short description of the methods for updating SUTs

Method Source Data requirements for the
projected year(s)

1 EUKLEMS method Timmer et al. (2005) and further
Timmer’s guidelines

Column totals

2 Euro method Beutel (2002), Eurostat (2008) Growth rates of: (i) sec-
toral value added, (ii) totals
of final demand categories,
and (iii) total imports

3 GRAS (Generalized RAS) Günlük-Şenesen and Bates
(1988), Junius and Oosterhaven
(2003)

Row and column totals

4 INSD (Improved normal-
ized squared differences)

Friedlander (1961), Huang et al.
(2008)

Row and column totals

5 ISD (Improved squared
differences)

Almon (1968), Jackson and Mur-
ray (2004), Huang et al. (2008)

Row and column totals

6 IWSD (Improved
weighted squared dif-
ferences)

Pavia et al. (2009) – slightly re-
vised here to allow for negative
entries

Row and column totals

7 Harthoorn and van
Dalen’s method (INSD
and two other types
depending on the weights
choice)

Harthoorn and van Dalen (1987)
– slightly revised here to allow for
negative entries

Row and column totals

8 Kuroda’s method (three
types depending on the
weights choice)

Kuroda (1988) – slightly revised
here to allow for negative entries;
Wilcoxen (1989)

Row and column totals

Note: The row and column totals of the entire projected matrix in the text were denoted, respec-
tively, by the column vectors u and v. All the methods additionally require availability of the full
benchmark matrix A of the base year.

as well, and for all (k, h) that have akh = 0, we redefine wkh = vkh = s−1
kh = 0.

The short summary of SUTs and IO updating methods discussed in this work

is given in Table 1.

3 Empirical evaluation

Each updating method discussed in the previous section produces different set of

estimates, thus it is desirable to assess their relative performance. We do not use

any of the objective functions from Section 2 as the matrix-comparison statistics of

the closeness of the estimates to actual matrices, which is, in fact, often practiced in

the related literature. We find it a rather strange way of comparison, because it is

obvious that if, for example, the GRAS function is chosen as a measure of closeness,

then most probably the GRAS estimate will produce the ‘best’ outcome. Instead

the closeness statistics have to be ‘neutral’ with respect to all the methods used
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and should assess the methods on equal ground. It is evident that choosing a single

statistics as a measure of closeness would be misleading either, since it very well may

happen that a method can score well on one dimension but very bad on the other.

Thus, several measures are used in order to get more insight into the characteristics

of each method. We use the following criteria:

1. Mean absolute percentage error (Butterfield and Mules 1980):

MAPE =
1

mn

m∑
i=1

n∑
j=1

|xij − xtrueij |
|xtrueij |

× 100,

where xtrueij is the true element, while xij is its estimate. Thus, MAPE shows the

average percentage by which each estimated element is larger or smaller than its true

value. For xtrueij = 0 we set the corresponding difference to zero (as zero is preserved

in all the estimates). Note that we take the denominator in absolute value as well

so that it does not allow to reduce the actual error when xtrueij < 0.

2. Weighted absolute percentage error (Mı́nguez et al. 2009):

WAPE =
m∑
i=1

n∑
j=1

( |xtrueij |∑
k

∑
l x

true
kl

) |xij − xtrueij |
|xtrueij |

× 100,

which weights each percentage deviation of xij from xtrueij by the relative size of the

corresponding true element in the overall sum of the actual elements.

3. Standardized weighted absolute difference (Lahr 2001):

SWAD =

∑m
i=1

∑n
j=1 |xtrueij | × |xij − xtrueij |∑

k

∑
l(x

true
kl )2

,

which is effectively similar to WAPE with the difference that the absolute deviations

are weighted by the size of the true transactions.

4. The psi statistic (Kullback 1959, Knudsen and Fotheringham 1986):

ψ̂ =
1∑

k

∑
l x

true
kl

∑
i

∑
j

[
|xtrueij | ×

∣∣∣ ln
(xtrueij

sij

)∣∣∣ + |xij| ×
∣∣∣ ln

(xij
sij

)∣∣∣] ,
where sij = (|xtrueij | + |xij|)/2. This information-based statistic has a lower limit of

zero when Xtrue = X, and upper bound of mn ln 2 when the non-zero elements of

Xtrue correspond to the zero elements of X, and vice versa. Unlike MAPE, WAPE

and SWAD, the psi statistic is insensitive to the change in the positions of xtrueij and

xij, and it offers the advantage of considering the case when xtrueij = 0 and xij 6= 0

(next to the reverse situation).11 Knudsen and Fotheringham (1986) concluded that

11When xtrue
ij = 0, we set the corresponding element of MAPE, WAPE and SWAD to zero,
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the psi statistic is one of the most useful goodness-of-fit measures for comparative

purposes because ψ̂ indicator showed a linear relation between its value and the level

of error.

5. RSQ (or coefficient of determination) – the square of the correlation coef-

ficient between the elements of the actual and predicted matrices of Xtrue and X,

respectively, when at least one of them is different from zero.

6. N0 - number of zero elements in the estimated matrix X, whose corresponding

elements are nonzero in the actual matrix Xtrue, i.e., the count of (i, j)s with xij = 0

for which xtrueij 6= 0. This situation happens for two reasons: first, over time zero

transactions can turn into positive links, which represents ‘structural change’ and

larger interdependencies in the economy over time. Second, some updating methods

nullify certain elements in X, which is the case when a change in the sign of the

predicted entries is expected, but the corresponding penalty functions instead make

them (virtually) zero. Both these effects can be easily found from N0 as will be

discussed below.

In our first empirical application, we use three benchmark Supply and Use ta-

bles of the Netherlands for the fiscal years of 1995, 2000, and 2005. There are 59

commodities and 60 industries. For the supply matrices we deleted four industries

with zero intermediate totals, and one commodity without any industrial use, hence

we used and estimated 58× 56 Supply tables. Apart from that, for the Use tables,

we use four final demand categories: final consumption expenditure by households,

consumption by non-profit organizations serving households (NPISH), government

expenditures, and gross fixed capital formation. We did not predict commodity ex-

ports and imports (in the Supply table), since these data are often available from

the trade statistics. Further, deleting one extra row of product without any use, we

ended up with 57× 59 Use tables.12

The results of updating Supply and Use matrices are given, respectively, in

Table 2 and Table 3.13 Let consider the upper block of the first table, which gives

the results of the updated Supply table for 2000 on the basis of the 1995 Supply

table, and the row and column sums from 2000 Supply table. We see that Harthoorn

and van Dalen’s method with weights being the squares of the original entries a2
ij

(HvD1) is, on average, 10.66% ‘in error’ according to MAPE. On the other hand,

the least error according to WAPE is caused by RAS updating. The number N0

for the first two methods (i.e., EUKLEMS and RAS) will always show the count of

and when xtrue
ij = xij = 0, the corresponding entry of ψ̂ is nullified as well.

12In the 2005 Use table there was the third commodity Retail trade services without any use,
but we did not take it away, since these services were provided to the households at the amount of
492 and 461 Mln Euros for years 1995 and 2000, respectively. As a result we add a small number
(unity) in the corresponding cell in the 2005 Use table to make the programs ‘feasible’.

13All the projections are implemented in MATLAB.
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Table 2: Results of updating Supply tables at basic prices for the Netherlands

MAPE R. WAPE R. SWAD R. ψ̂ R. RSQ R. N0 R. CmR.

1995 ⇒ 2000

EUKLEMS 12.95 5 4.17 6 0.010 6 0.041 6 0.9992 6 28 1 5
RAS 12.76 4 3.21 1 0.005 2 0.031 1 0.9997 1 28 1 1
HvD1 10.66 1 4.71 7 0.011 7 0.046 7 0.9992 6 31 5 6
HvD/INSD 12.46 3 3.30 2 0.005 1 0.032 2 0.9997 1 28 1 1
HvD3 137.20 8 29.33 9 0.229 9 0.330 9 0.9800 8 85 9 9
ISD 271.85 10 37.92 10 0.201 8 0.346 10 0.9753 10 200 10 10
IWSD 266.89 9 27.14 8 0.236 10 0.262 8 0.9775 9 53 7 8
Kuroda1 12.07 2 3.70 3 0.006 3 0.036 3 0.9995 4 29 4 3
Kuroda2 15.18 7 3.78 5 0.008 5 0.037 5 0.9995 4 62 8 7
Kuroda3 14.99 6 3.72 4 0.007 4 0.036 4 0.9996 3 50 6 4

0.5× (1995 + 2005) ⇒ 2000

EUKLEMS 14.17 5 5.23 7 0.016 7 0.051 7 0.9987 7 10 1 6
RAS 14.05 4 4.27 4 0.012 4 0.042 4 0.9994 4 10 1 4
HvD1 12.87 1 4.01 2 0.009 2 0.040 2 0.9995 1 11 3 2
HvD/INSD 13.75 3 4.09 3 0.010 3 0.040 3 0.9995 1 11 3 3
HvD3 39.06 9 10.21 10 0.060 9 0.099 10 0.9935 9 97 9 10
ISD 89.41 10 9.43 8 0.031 8 0.088 8 0.9978 8 182 10 8
IWSD 38.68 8 10.09 9 0.062 10 0.099 9 0.9931 10 55 8 9
Kuroda1 13.14 2 3.71 1 0.008 1 0.037 1 0.9995 1 11 3 1
Kuroda2 21.04 7 4.91 6 0.016 6 0.048 6 0.9990 6 43 7 7
Kuroda3 17.57 6 4.78 5 0.016 5 0.046 5 0.9991 5 38 6 5

1995 ⇒ 2005

EUKLEMS 26.25 5 8.45 7 0.028 6 0.079 7 0.9964 7 73 1 7
RAS 26.14 4 6.25 2 0.014 1 0.059 2 0.9985 1 73 1 2
HvD1 18.98 1 8.03 6 0.034 7 0.075 6 0.9975 6 76 4 5
HvD/INSD 24.56 3 6.48 3 0.021 3 0.061 3 0.9978 3 80 5 3
HvD3 219.22 8 48.45 9 0.396 9 0.461 9 0.9529 8 177 9 9
ISD 432.07 10 60.85 10 0.333 8 0.548 10 0.9277 10 288 10 10
IWSD 341.14 9 44.96 8 0.410 10 0.430 8 0.9442 9 111 7 8
Kuroda1 23.48 2 6.02 1 0.021 2 0.056 1 0.9978 3 73 1 1
Kuroda2 33.51 6 7.40 5 0.023 5 0.069 5 0.9978 3 172 8 6
Kuroda3 35.01 7 7.11 4 0.022 4 0.066 4 0.9980 2 108 6 4

(1995 ⇒ 2000) ⇒ 2005

EUKLEMS 26.25 5 8.45 6 0.028 6 0.079 6 0.9964 7 73 1 5
RAS 26.14 4 6.25 1 0.014 1 0.059 1 0.9985 1 73 1 1
HvD1 19.06 1 8.58 7 0.037 7 0.081 7 0.9969 6 76 5 6
HvD/INSD 24.50 3 6.54 3 0.022 3 0.061 3 0.9977 4 73 1 2
HvD3 870.06 9 50.34 9 0.393 9 0.486 8 0.9528 8 131 8 8
ISD 543.08 8 63.06 10 0.335 8 0.613 10 0.9272 9 151 9 10
IWSD 1118.10 10 49.10 8 0.410 10 0.608 9 0.8904 10 88 6 9
Kuroda1 23.59 2 6.50 2 0.024 5 0.061 2 0.9975 5 74 4 3
Kuroda2 48.06 7 7.44 5 0.023 4 0.071 5 0.9978 3 152 10 7
Kuroda3 39.36 6 7.18 4 0.021 2 0.070 4 0.9980 2 115 7 4

Note: Harthoorn and van Dalen’s method with weights (i.e., gij in (29)) a2
ij , |aij |, and unity are, respectively,

denoted by HvD1, HvD/INSD and HvD3. Kuroda method with its corresponding weights in (38), (39), and unity
are, respectively, labeled Kuroda1, Kuroda2, and Kuroda3. R. denotes the ranking of the methods, while CmR. is
the combined rank of the averages of all the six rankings. 1995 ⇒ 2000, for example, means that 1995 table is used
to project 2000 table. (1995 ⇒ 2000) ⇒ 2005 means that the 2000 updated matrix (on the base of 1995 table) is
used as a benchmark for estimating 2005 table. The penalty value is M = 10100.

the entries that changed their signs (become positive) over time. This is because the

EUKLEMS and (G)RAS approaches will always keep original zeros in the updated

matrix, but do not generate zero entries themselves. So, 28 zero entries of the 1995

Supply table of the Netherlands become positive in 2000, which effectively represents
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the effect of a ‘structural change’ and increased interdependency over this five year

interval. The N0 is largest for the ISD method and is equal to 200. This means

that the ISD nullifies many elements in its updating process, whose exact number

is 200-28=172. These elements would have been negative without introducing the

penalty function for (20). Certainly, one would give priority to the method that

does not produce additional zeros, which are indeed positive in the actual tables.

Besides estimating 2000 table on the basis of the 1995 table (i.e., 1995 ⇒ 2000),

we performed also the following updates: (2) interpolation of the 2000 table on the

base of the arithmetic average of the 1995 and 2005 tables, 0.5 × (1995 + 2005) ⇒
2000, (3) extrapolation of the 2005 table on the basis of the 1995 table, 1995 ⇒ 2005,

and (4) extrapolation of the 2005 table on the basis of the 2000 estimate that is

obtained from the 1995 table, (1995 ⇒ 2000) ⇒ 2005. For these four exercises, the

count of cells for which xtrueij = 0 and xij 6= 0 were, respectively, equal to 42, 97,

69 and 69 for Supply table projections. The corresponding figures for the Use table

projections, which are given in Table 3, were 74, 123, 129 and 129, respectively.

Recall that MAPE, WAPE, SWAD and N0 do not consider such cases, while

they are taken into account by the psi statistic, ψ̂. From Tables 2 and 3, we observe

that the rankings of the updating methods according to WAPE and ψ̂ measures

can be quite similar, especially, for the Supply table projections. This happens for

the following reason. If xtrueij 6= 0 for all i and all j, WAPE/100 is equal to the

standardized absolute error (?)14

SAE =
m∑
i=1

n∑
j=1

|xij − xtrueij |∑
k

∑
l x

true
kl

.

? conclude that “... the versions of information-theoretic statistics favoured in the

geographical literature tend to produce essentially the same results as the much

simpler SAE” (p. 197) by showing that ψ̂ ≈ SAE (see their Appendix, pp. 198-

200). This also explains the closeness of the values of WAPE/100 and ψ̂ in Tables 2

and 3. Since the number of cases when xtrueij = 0 and xij 6= 0 are less in all four

exercises with Supply rather than Use tables projections, the results of WAPE

and SAE are also closer in the Supply table projections. Thus, WAPE and ψ̂

provide mainly exactly the same rankings in the Supply estimation (except the last

case of (1995 ⇒ 2000) ⇒ 2005), while the rankings are exact in two out of the

four projections of the Use tables. Thus we may conclude that, in general, if the

number of cells when xtrueij = 0 and xij 6= 0 are relatively small (relative to, say, the

14In fact, ? use the overall sum of the elements of the estimated matrix, but in our setting the
last is equal to the overall sum of the true matrix entries, since the row and column sums of the
predicted and actual tables are the same.
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Table 3: Results of updating Use tables at purchase prices for the Netherlands

MAPE R. WAPE R. SWAD R. ψ̂ R. RSQ R. N0 R. CmR.

1995 ⇒ 2000

EUKLEMS 23.55 5 11.94 6 0.048 6 0.118 6 0.9766 8 72 1 6
RAS 22.58 3 8.97 2 0.031 2 0.089 2 0.9971 1 72 1 2
HvD1 21.93 2 15.08 7 0.068 7 0.149 7 0.9883 6 72 1 5
HvD/INSD 22.82 4 9.07 3 0.031 3 0.090 3 0.997 2 72 1 3
HvD3 266.74 8 30.65 8 0.185 9 0.291 8 0.9778 7 632 9 8
ISD 270.59 9 33.41 9 0.171 8 0.312 9 0.9746 9 950 10 9
IWSD 1086.10 10 37.26 10 0.216 10 0.341 10 0.9684 10 233 7 10
Kuroda1 21.44 1 8.65 1 0.026 1 0.086 1 0.997 2 72 1 1
Kuroda2 62.59 7 11.55 5 0.047 5 0.113 5 0.9949 5 494 8 7
Kuroda3 35.07 6 10.21 4 0.034 4 0.101 4 0.9962 4 163 6 4

0.5× (1995 + 2005) ⇒ 2000

EUKLEMS 36.36 5 9.91 6 0.034 6 0.097 7 0.9959 4 18 1 5
RAS 32.34 2 8.14 2 0.023 2 0.080 2 0.9978 9 18 1 2
HvD1 36.02 4 9.85 5 0.035 7 0.097 6 0.9961 5 20 5 6
HvD/INSD 32.11 1 8.10 1 0.024 3 0.080 1 0.9979 10 18 1 1
HvD3 121.86 8 15.44 9 0.071 9 0.146 8 0.9905 2 611 9 8
ISD 133.68 9 16.20 10 0.063 8 0.151 10 0.9922 3 693 10 10
IWSD 222.41 10 15.43 8 0.080 10 0.147 9 0.9864 1 590 8 9
Kuroda1 32.86 3 9.15 3 0.032 5 0.090 4 0.9969 6 18 1 3
Kuroda2 68.72 7 9.97 7 0.030 4 0.096 5 0.9969 6 344 7 7
Kuroda3 43.46 6 9.15 4 0.023 1 0.089 3 0.9972 8 74 6 4

1995 ⇒ 2005

EUKLEMS 53.14 4 22.72 6 0.099 6 0.218 6 0.9686 6 103 1 5
RAS 50.52 3 17.97 1 0.055 1 0.173 2 0.9838 1 103 1 1
HvD1 41.30 1 28.46 7 0.135 7 0.272 7 0.9468 7 103 1 5
HvD/INSD 52.10 5 18.80 3 0.056 3 0.180 3 0.9816 2 103 1 3
HvD3 657.72 9 53.66 8 0.337 9 0.495 8 0.9282 8 873 9 8
ISD 489.10 8 56.82 9 0.310 8 0.516 9 0.9161 9 1244 10 9
IWSD 1988.30 10 62.88 10 0.390 10 0.561 10 0.8915 10 286 7 10
Kuroda1 47.52 2 18.07 2 0.056 2 0.172 1 0.9789 4 103 1 2
Kuroda2 127.56 7 22.62 5 0.092 5 0.214 5 0.9779 5 778 8 7
Kuroda3 74.87 6 20.19 4 0.060 4 0.192 4 0.9796 3 234 6 4

(1995 ⇒ 2000) ⇒ 2005

EUKLEMS 53.14 5 22.72 5 0.099 6 0.218 5 0.9686 6 103 1 5
RAS 50.52 3 17.97 1 0.055 1 0.173 1 0.9838 1 103 1 1
HvD1 41.09 1 30.83 7 0.149 7 0.295 7 0.9313 7 103 1 6
HvD/INSD 51.26 4 18.60 2 0.056 2 0.178 2 0.982 2 103 1 2
HvD3 887.95 9 56.97 8 0.334 9 0.577 8 0.9254 8 398 8 8
ISD 795.49 8 60.43 9 0.315 8 0.622 9 0.9147 9 521 10 9
IWSD 3281.60 10 72.50 10 0.390 10 1.139 10 0.5765 10 186 6 10
Kuroda1 47.87 2 18.87 3 0.061 3 0.180 3 0.9727 5 103 1 3
Kuroda2 187.77 7 23.10 6 0.091 5 0.233 6 0.9781 4 476 9 7
Kuroda3 80.82 6 20.27 4 0.061 3 0.195 4 0.9798 3 200 7 4

Note: See the endnotes to Table 2.

size of the projected matrix), then WAPE, SAE and ψ̂ are essentially equivalent

goodness-of-fit statistics for matrix comparative purposes.

In all parts of Table 2 and Table 3 we systematically observe that three methods

HvD3, ISD and IWSD are overall performing worse among all ten alternatives, and

produce deviations of the values of the statistics that are far away from those of the

other methods. They share one common feature: the errors (differences) of the new

over old elements ratios, xij/aij, from unity in the objective functions are weighted

27



directly by the enlarged size of the original elements (see (20), (25), (29) with gij = 1

(HvD3)). This suggests that a weighting scheme that weights deviations of the ratios

by the expanded size of the original elements (i.e., taking the element to the power

of more than one) may not be a good starting point. Given the poor performance

of these three approaches, our first conclusion is that these methods should not be

used for updating SUTs (and SIOTs).

All parts of Table 2 and Table 3 (except the case 0.5× (1995 + 2005) ⇒ 2000 in

the Supply projection) consistently show that the three ‘best’ performing updating

methods are RAS, HvD/INSD,15 and Kuroda1. The overall ranking of the four exer-

cises in Table 2 and also in Table 3 show the following ordering: RAS, Kuroda1 and

HvD/INSD. The fact that (G)RAS was outperforming other updating methods was

extensively reported in the literature (see e.g., Evans and Lindley 1973, Davis et al.

1977, Jalili 2000, Jackson and Murray 2004). Huang et al. (2008) recommended to

use GRAS and INSD for updating IO tables, and our results confirm that indeed

these two methods are not inferior. However, there is, at least, one other method

which is performing quite well either. This is Kuroda’s method that minimizes the

changes of the updated row and column coefficients from those of the base year

(see (40)). Note that HvD/INSD has the objective that weights the correspond-

ing updating errors of the transactions’ ratios directly by the size of the original

transactions |aij|. The same is true for (G)RAS (see (11)). This would suggest that

the hypothesis that transactions’ ratios (and not transactions themselves) are more

permanent and stable for larger original deliveries than for the smaller ones is indi-

rectly confirmed by the success of RAS and HvD/INSD, at least, for the case of the

Netherlands. Our second conclusion is that, for our data, the RAS, Kuroda1, and

HvD/INSD updating methods are performing quite well, and may be used for esti-

mating SUTs. The relative performance of these methods should be further checked

on other datasets as well.

Comparing the results in the first and second blocks of Tables 2 and 3 we can

conclude that the interpolation of the 2000 Supply table does not provide better

estimate than its extrapolation on the basis of the 1995 Supply table according to

all methods except the three worse performing updating approaches (i.e., HvD3,

ISD and IWSD). These methods turn out to give better results when both 1995

and 2005 tables are used, but still the obtained errors are quite large compared to

those of the other approaches. However, in the estimation of the Use table, the

interpolation may give better estimates than pure extrapolation on the earlier data.

Since, the Use table is much denser than the Supply table, one may conclude that

the interpolation may give better projections for the tables that are not sparse.

15Recall that Harthoorn and van Dalen’s method with the elements’ relative confidences equal to
the absolute values of the original entries (gij = |aij | in (29)) is nothing else as the INSD approach.
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The bottom parts of Table 2 and Table 3 give the result of projecting 2005

SUTs using the updated 2000 tables, which were based on the 1995 SUTs. The

question that we are interested in is whether using the new 2000 estimate gives better

outcome than the earlier 1995 actual data for updating 2005 tables. Comparing

the leading four updating methods for all indicators we get no definitive answer.

Kuroda1 method mainly performs worse with the recent estimate rather than the

actual earlier data. HvD/INSD’s performance can go either directions depending on

the choice of the goodness-of-fit statistic. Note that the EUKLEMS and RAS give

exactly the same values of all the indicators in the current exercise. The reason is

simple: for these methods the updating case (1995 ⇒ 2000) ⇒ 2005 means nothing

else as using the structure of the 1995 SUTs to predict the 2005 matrices. Thus the

results of their performance in this updating exercise will be exactly the same as the

estimation of the 2005 tables directly from the 1995 data.

In our final empirical application, we use Spanish SUTs for two benchmark years

of 2000 and 2005 available from the National Statistics Institute of Spain. The dis-

tinguishing feature of this data is that the Use tables are given in basic prices, and

further distinguished between the domestic and imported use matrices. This is ex-

actly what we need for assessing the Euro method that has not been analyzed in the

previous evaluations namely because of unavailability of the Netherlands’ domestic

and imported Use tables in basic prices. The Spanish Supply and intermediate Use

tables originally consisted of 118 commodities and 75 industries. After some ‘clean-

ing process’ and the fact that the Euro method works only for symmetric SUTs, we

ended up with 73 products and 73 industries.16 The domestic and imported final

demand consist of three categories: total consumption, gross capital formation (with

both positive and negative entries), and exports.

The results of the evaluation of seven methods, six of which performed relatively

well with the Dutch SUTs, are given in Table 4. We do not compute the coefficient

of determination this time, since in the previous exercises it showed to be a weak

statistic for matrix comparison purposes. In fact, such an outcome confirmed the

same conclusion of Knudsen and Fotheringham (1986) on the use of RSQ. To

jump ahead, the analysis of Table 4 reveals that the same three methods always

outperform other updating techniques, and, moreover, their overall ordering is also

similar: GRAS, Kuroda1, and HvD/INSD. Note that in the prediction the total

intermediate use Kuroda1 outperforms RAS. These additional findings show that

indeed the three mentioned methods can be used for updating SUTs and SIOTs.

16This number decreased from 75 to 73 because we were not able to distinguish between Market
and Non-market health services, and Market and Non-market recreational, cultural and sporting
activities. This is because CNPA 96 products classification does not distinguish between non-profit
institution serving households (NPISHs) and governmental services, which is the case for CNAE
93 industry classification.
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Table 4: Results of updating Spanish SUTs at basic prices

MAPE R. WAPE R. SWAD R. ψ̂ R. N0 R. CmR.

Supply Table (2000 ⇒ 2005)

EURO 21.04 6 8.44 7 0.109 7 0.083 6 108 1 7
EUKLEMS 18.91 3 2.51 5 0.004 3 0.024 4 108 1 4
RAS 19.61 4 1.96 1 0.004 2 0.018 1 108 1 1
HvD1 16.43 1 2.65 6 0.010 6 0.025 5 109 2 5
HvD/INSD 19.88 5 2.05 3 0.004 1 0.019 2 115 4 3
Kuroda1 18.40 2 1.98 2 0.005 4 0.018 1 110 3 2
Kuroda3 27.49 7 2.30 4 0.005 5 0.022 3 183 5 6

Total Intermediate Use Table (2000 ⇒ 2005)

EURO 38.02 4 20.93 7 0.348 8 0.206 7 120 2 7
EUKLEMS 93.59 7 22.03 8 0.195 7 0.214 8 112 1 8
EUKLEMS* 34.68 1 16.58 5 0.150 6 0.163 5 120 2 3
RAS 38.07 5 13.81 2 0.077 2 0.136 2 120 2 2
HvD1 35.43 2 20.66 6 0.083 4 0.203 6 120 2 5
HvD/INSD 39.15 6 15.02 3 0.099 5 0.148 3 120 2 3
Kuroda1 37.69 3 13.17 1 0.023 1 0.129 1 120 2 1
Kuroda3 96.12 8 15.75 4 0.083 3 0.154 4 364 3 6

Total Final Demand Table (2000 ⇒ 2005)

EURO 249.42 7 8.38 7 0.051 7 0.085 7 3 1 7
EUKLEMS 235.18 5 14.78 8 0.100 8 0.148 8 3 1 8
EUKLEMS* 239.91 6 7.90 6 0.048 6 0.080 6 3 1 6
GRAS 114.35 2 4.28 2 0.012 2 0.044 1 3 1 1
HvD1 143.88 3 5.53 5 0.019 5 0.056 5 4 2 4
HvD/INSD 90.04 1 4.30 3 0.012 3 0.044 3 5 3 3
Kuroda1 227.74 4 4.24 1 0.010 1 0.044 1 4 2 2
Kuroda3 269.61 8 4.56 4 0.017 4 0.047 4 6 4 5

Note: EUKLEMS∗ technique differs from the EUKLEMS described in Section 2.1 in only projecting the Use
matrix on the base of the Use table at basic prices (and not purchase prices), where the growth rates of commodity
outputs at basic prices are applied row-wise to the original Use table and normalized such that the actual totals are
consistent with the true use totals (similar to Step 4 in Section 2.1).

We consider one more indicator in case of the Supply estimation, which has to

do with the change in the size of the main product/industry compared to its non-

principal activities and by-products.17 Let sij be the amount of product i that is

supplied by industry j. Then the main product supplying ratio of commodity i is

MPSRi =
sii∑
j sij

,

while the main industry supplying ratio of industry j is

MISRj =
sjj∑
i sij

.

17We are grateful to Jiemin Guo for this suggestion.
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To see whether the estimated Supply retains the same main product and industry

ratios as in the true Supply matrix, we compute the product and industry difference

indices for commodity i and industry j, respectively, as

PDi = MPSRi/M̂PSRi and IDj = MISRj/M̂ISRj, (41)

where, for example, M̂PSRi is the MPSR of product i in the estimated Supply

matrix. The upper part of Figure 1 illustrates the descriptive statistics (i.e., mini-

mum, mean and maximum) of these indicators. It shows that although the average

of the product and industry difference indices (41) of all methods is pretty close to

one, the spread of these indices across products and industries largely differs from

one method to the other. In particular, we clearly see that the Euro and EUK-

LEMS methods are performing worse in this regard (although EUKLEMS approach

shows better performance with MPSRs differences), while RAS, HvD1, HvD/INSD,

and Kuroda1 show quite small deviation of both difference indicators. This clearly

suggests that the main product and industry supplying ratio are predicted quite

inaccurately across commodities and sectors by the Euro, EUKLEMS, and Kuroda3

methods.

The bottom part of Figure 1 illustrates relative MAPE, WAPE and SWAD

indicators derived from Table 4 for Supply, total intermediate and final use pro-

jections. That is, these indicators are normalized by corresponding values of the

GRAS method, hence for GRAS these relative measures are equal to one. We do

not show ψ̂ statistic, because its trend is extremely close to WAPE. We do not

show the relative SWAD measure for the Supply projection for the Euro method,

since this number is quite large (i.e., equal to 26.63) that makes the visual com-

parison of other methods impossible. These three figures clearly demonstrate our

main finding: the relative measures for HvD/INSD and Kuroda1 are very close to

one (i.e., to the GRAS outcome), and those of all other methods are mainly larger

than unity, thus performing worse than GRAS. The fourth overall ranking takes the

EUKLEMS method in predicting Supply tables, but it estimates the Use tables with

large errors (together with the Euro method).

EUKELEMS* differs from the EUKLEMS described in Section 2.1 in only one

respect: it projects the Use matrix on the base of the Use table at basic prices

(and not purchasers’ prices), where the growth rates of commodity outputs at basic

prices are applied row-wise to the original intermediate and final use table and then

normalized such that the actual totals are consistent with the true use totals of

the 2005 Use tables (similar to Step 4 in Section 2.1). This procedure show better

result than the standard EUKLEMS, where the stating point is the Use table at

purchasers’ prices. This result is entirely expectable, since given that the Use table
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Figure 1: Results of Spanish SUTs projections

at basic prices is available, one does not have to transform Use tables from purchase

into basic prices. Hence, additional errors due to the estimation of matrices of trade

margins, transportation margins, and net taxes are avoided when the initial Use

table is available at basic prices.

4 Concluding remarks

Given the importance of availability of Supply and Use tables (SUTs) and symmetric

input-output tables (SIOTs) for policy-relevant research and the problem of time-

liness of these data, many non-survey (semi-survey) methods have been proposed

and extensively used in the literature. The purpose of this paper was to present

and assess the relative performance of eight existing methods for updating SUTs
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(and SIOTs), some of which are less (or even not) known in the literature. Three

methods were slightly revised in this paper with regard to updating negative entries

as well as preserving the signs of the elements of the original matrix in the projected

one.

Our empirical applications of the methods to the Dutch and Spanish SUTs

projections showed that (G)RAS, and two other methods proposed, respectively, by

Harthoorn and van Dalen (1987) and Kuroda (1988) are providing best estimates

of the SUTs of the Netherlands and Spain. Hence, we conclude that these three

methods may be used for updating purposes. We should note that the improved

normalized squared differences (INSD) updating approach proposed by Huang et al.

(2008) is nothing else as a particular case of Harthoorn and van Dalen’s method.

On the other hand, among other techniques, the Euro method that is used by the

Eurostat does not show satisfying performance on these data.

Our study also suggests that the hypothesis that transactions’ ratios (and not

transactions themselves) are more permanent and stable for larger original deliveries

than for the smaller ones is indirectly confirmed by the relative success of GRAS

and HvD/INSD methods. Finally, when there is a choice between extrapolation on

the base of earlier tables and interpolation that also uses more recent information,

we could conclude from the results that interpolation, on average, works better

for denser matrices (such as Use tables), while it is outperformed by extrapolation

results for spare matrices (such as Supply tables). We think that the reason for

this outcome is as follows. Over time, the degree of interconnectedness becomes

larger, and this is especially true for Use tables where more zero elements become

non-zero (mainly positive). Thus, extrapolation on earlier data will miss many such

changes, while if one uses an earlier and more recent tables, it is expected that such

“structural changes’ are taken into account more accurately.
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