Model	Econometric procedure	Data	Results

Wealth equality in the long run: A Schumpeter growth perspective

Jakob B. Madsen[♠] Antonio Minniti[◊] Francesco Venturini[♡]

ullet Monash University \diamondsuit University of Bologna \heartsuit University of Perugia

GGDC, Groningen

June 28, 2017

Model	Econometric procedure	Data	Results
ooooooo		0000	00000000000000
Overview			

- Great interest for the income inequality-growth nexus (Aghion et al. 1999, Cingano 2014)
- Rich evidence on factors explaining the decline in labour share, i.e. technical change, innovation and intangibles (Elsby et al. 2013; Karabarbounis and Neiman 2014; Koh et al. 2016; O'Mahony et al. 2017).
- Increasing number of studies looking at the link between innovation and top income inequality (Jones and Kim 2015, Aghion et al. 2015; Paunov and Guellec 2017)
- Little interest on the link innovation-wealth inequality (Piketty and Zucman 2014)

Model	Econometric pro	ocedure		Data	Results
0000000	000			0000	000000000000000000000000000000000000000
T I 110			1. A.		

The "fundamental laws" of capitalism

First law

$$\alpha^{K} = \mathbf{r} \times \frac{K}{Y} = \mathbf{r} \times \beta$$

- *r* is net real rate of return on capital (or wealth)
- β ≡ K/Y is aggregate capital (wealth) stock, K, over income, Y.

 \Rightarrow Given *r*, the share of income accruing to capital owners, α^{K} , rises as the capital-to-income ratio rises (β).

 Model
 Econometric procedure
 Data
 Results

 OOO
 OO
 OOO
 OOO</t

Second law

$$\beta = \frac{K}{Y} = \frac{s}{g}.$$

In the long run the wealth-income ratio is driven by the ratio between of the saving rate, s, and the rate of income growth, g.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Model	Econometric procedure	Data	Results
ooooooo		0000	0000000000000
Criticism in sur	nmary		

- Severe criticism to Piketty's theory (implausible assumptions on elasticity of substitution or on net/gross variables, no institutions, driving role of housing, measurement issues, etc.).
- Most criticism induced by the lack of economic structure, and no mention to mechanisms or incentives driving wealth accumulation and income growth
- R&D treated **similarly** to investment in physical assets (see P&Z, 2014, QJE, p. 1267).

Contribution	of the work (1)		
Model	Econometric procedure	Data	Results

- We characterize Piketty's fundamental laws of capitalism within a Schumpeterian (R&D based) growth setting extended to include CAPITAL (Grossman and Helpman 1991)
- We study econometrically the drivers of wealth inequality through a regression analysis on 21 OECD countries between 1860 and 2015 addressing an array of issues (strong cross-sectional dependence, omitted variables, simultaneity issues, heterogeneity)

Model	Econometric procedure	Data	Results
000000	000	0000	000000000000000000000000000000000000000

THE MODEL: GH (1991) WITH CAPITAL

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Model	Econometric procedure	Data	Results
o●ooooo		0000	0000000000000
Final good pro	oduction		

- A homogeneous final good, Y, is produced under perfect competition and can be consumed by households or purchased by firms as capital equipment.
- Onstant-returns Cobb-Douglas production function

$$\Upsilon = A_\Upsilon L^{1-\zeta-\eta}_\Upsilon K^\zeta D^\eta$$
, with $0 < \zeta, \eta$, and $\zeta + \eta < 1$,

- A_Υ is a constant reflecting the choice of units;
- K denotes the aggregate capital stock;
- D represents an index of innovative (intermediate) inputs;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• L_{Υ} is the total employment in final good production.

Model oo●oooo	Econometric procedure	Data 0000	Results 0000000000000
-	 		

Intermediate goods production

$$\log D \equiv \int_0^1 \log \left[\sum_j q_j(\omega) d_j(\omega)
ight] d\omega,$$

- d_j(ω) represents the input of quality j of innovative (intermediate) product ω;
- Quality j of product ω is denoted as $q_j(\omega) = \lambda^j$, where $\lambda > 1$ represents the size of the quality increment;
- One unit of labor is needed to manufacture one unit of output, regardless of quality;
- Limit price set by the monopolistic firm (i.e. the one with the state-of-the-art quality product): $p = \lambda w$.

Model	Econometric procedure	Data	Results
ooo●ooo	000	0000	0000000000000
R&D sector			

- The R&D sector is characterized by a perfect competition, free entry and constant returns to scale.
- Incentives to do R&D come from the following condition:

$$v = \underbrace{w}_{=1}^{a_l}$$

marginal return = marginal cost

 v denotes the expected reward for winning an R&D race, i.e. the (stock market) value of innovation;

- a₁ units of labor employed in R&D per unit of time;
- Wage rate w normalized to 1.

Model	Econometric procedure	Data	Results
oooo●oo	000	0000	00000000000000
Growth equation	on		

$$g_{\Upsilon} = \dot{\Upsilon} / \Upsilon = rac{\eta}{1-\zeta} \, \checkmark \, \log \lambda$$

The rate of income growth, g is endogenous:

- *ι* rate of innovation (i.e. outcome of R&D activities)
- λ quality jump of innovative (intermediate) product
- η income share of innovative (intermediate) input;
- ζ income share of capital

In equilibrium, the rates of output, consumption and investment growth are identical g:

$$g = g \gamma = g_{\kappa} = g_{c}$$

Model	Econometric procedure	Data	Results
oooooooo		0000	0000000000000
Key eq: Wealt	h-income		

The value of the net wealth-income ratio is:

$$\beta \equiv \frac{W}{Y - \delta K} = \frac{K + v}{Y - \delta K}.$$

In steady state, wealth inequality can be expressed as:

in which k is a collection of parameters $(k = \frac{\eta}{1-\zeta} \log \lambda)$.

Model	Econometric procedure	Data	Results
oooooo●		0000	0000000000000
Predictions			

- *β* increases with the share of GDP accruing to capital investment and R&D (larger rewards to factor owners)
- β decreases with a faster rate of economic growth (resource distribution)
- However, as g depends on the rate of innovation (i.e. the rate of R&D success), β decreases with research productivity as more successful R&D destroys incumbents' rents.

 \Rightarrow Room for **positive public policies** promoting income growth, e.g. by raising R&D productivity or efficiency (IPR, competition policies, see Paunov and Guellec 2017)

Model	Econometric procedure	Data	Results
0000000		0000	0000000000000
Empirical spe	ecification		

We estimate this model as a log-linear specification:

$$\ln \beta = \eta_{0i} + \eta_1 \ln s_{R\&D,it} + \eta_2 \ln s_{K,it} + \eta_3 \ln g_{it} + \epsilon_{it},$$

▲□> <圖> < E> < E> E のQQ

• We expect that $\eta_1 > 0$, $\eta_2 > 0$ and $\eta_3 < 0$.

 Model
 Econometric procedure
 Data
 Results

 Occorr
 Occorr
 Occorr
 Occorr

 Cross-sectionally augmented distributed lag (CS-DL)

 approach (Chudik et al. 2016)

Let us consider a long-run relationship

$$y_{it} = \theta x_{it} + \epsilon_{it}$$

CS-DL estimates the following

$$y_{it} = \theta x_{it} + \beta \sum_{p=0}^{P_x} \Delta x_{it} + \omega_{yp} \sum_{p=0}^{P_y} \overline{y}_{it-p} + \omega_{xp} \sum_{p=0}^{P_x} \overline{x}_{it-p} + \tilde{\epsilon}_{it}$$

 Δx_{it} purges the effect of short-run feedbacks \overline{y} and \overline{x} purges the effect of unobserved factors (cross-sectional dependence).

Model	Econometric procedure	Data	Results
ooooooo	00●	0000	0000000000000
Properties of t	he estimator		

- CS-DL performs better than other dynamic estimators (such as ARDL) when short sample;
- Robust to error serial correlation, cross-sectional dependence, dynamic misspecification, breaks in the error processes, non-stationarity;
- However, CS-DL suffers from feedbacks from x's on y. Valid alternatives are:

- \Rightarrow Auto-regressive Distributed Lags (ARDL) model
- \Rightarrow IV regression

Model	Econometric procedure	Data	Results
ooooooo		●000	0000000000000
Country and	time coverage		

- Country coverage: 21 OECD countries (Austria, Australia, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, UK, US);
- 2 Time span: 1860-2015;
- Variables are expressed in gross terms and constant prices (departure from Piketty).

Model	Econometric procedure	Data	Results
0000000		o●oo	0000000000000
Summary			

Variable	Definition	Data
β	Wealth/income	(R&D + capital stocks) /GDP
		Stock market capitalization/GDP
SR&D	R&D investment rate	R&D investment/GDP
s _K	Capital Investment rate	Capital investment/GDP
		(structures and equipment)
g	Income growth	GDP or GDP per capita growth
		(adjusted for capital depreciation)
δ	Depreciation rate	Weighted average of depreciation rates
		of R&D and capital stocks
Controls	Financial development	Bank credit/GDP
	Macroeconomic instability	Inflation rate
	Fiscal burden	Direct taxation/GDP
	Trade openness	(Import+Export)/GDP

Model	Econometric procedure	Data	Results
ooooooo		00●0	0000000000000
Further details			

- Real GDP is expressed in 1990 dollars valued at PPP;
- R&D and physical stocks obtained through the perpetual inventory method:
 - depreciation rate of 15% for R&D expenses, 17% for equipment and 3% for structures.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Model	Econometric procedure	Data	Results
ooooooo		000●	000000000000
Summary statis	stics		

Table: Summary statistics, 1860-2015

		TOTAL SAMPLE			COUNTRY PERFORMANCE			NCE
		Mean	SD	Median	Max		Min	
Wealth-income ratio, β								
R&D stock/GDP		0.039	0.048	0.012	USA	0.066	PRT	0.010
Capital stock/GDP		1.496	0.775	1.498	FRA	2.497	PRT	0.335
(R&D + Capital stocks)/GDP		1.535	0.781	1.551	FRA	2.553	PRT	0.345
Stock market capitalization/GDP		32.7	44.4	20.0	GBR	125.0	PRT	0.08
Saving/investment rate								
R&D investment/GDP	SR&D	0.007	0.009	0.003	USA	0.012	PRT	0.002
Capital investment/GDP	s _K	0.026	0.060	0.013	ITA	0.091	GER	-0.022
(R&D + Capital investment)/GDP	$s_{R\&D} + s_K$	0.033	0.059	0.020	ITA	0.095	GER	-0.012
Income growth								
GDP	g	0.016	0.045	0.017	FIN	0.021	NZL	0.011
GDP + depreciation	$(g + \delta)$	0.110	0.050	0.110	CAN	0.116	IRE	0.098

Model	Econometric procedure	Data	Results
ooooooo	000	0000	●000000000000
Organization o	f estimates		

- Baseline estimates (measurement)
- Robustness checks (control variables)
- Time pattern (time intervals)
- Multidimensional heterogeneity (across country and time)

- Simultaneity issues (IV estimates; preliminary)
- Short-run feedbacks (panel VAR; preliminary)

Model	Econometric procedure	Data	Results
			000000000000000000000000000000000000000

Benchmark estimates and control variables

		1	2	3	4	5	6
R&D investment/GDP	s _{R&D}	0.029*** (0.010)	0.033*** (0.009)	0.028*** (0.010)	0.030*** (0.009)	0.031*** (0.010)	0.025***
${\sf Capital\ investment}/{\sf GDP}$	sĸ	0.155*** (0.007)	0.152*** (0.007)	0.155*** (0.007)	0.153*** (0.007)	0.140*** (0.007)	0.132*** (0.007)
Income growth	g'	-0.051*** (0.005)	-0.051*** (0.004)	-0.051*** (0.005)	-0.049*** (0.005)	-0.049*** (0.005)	(****)
Bank credit/GDP			0.077*** (0.007)				
Inflation rate			(****)	0.001 (0.007)			
Taxation rate				()	-0.091*** (0.009)		
Trade openness					()	0.023	
Patenting rate						()	-0.145*** (0.026)
Obs. R-squared		3,276 0.319	3,276 0.342	3,276 0.319	3,276 0.342	3,068 0.288	3,269 0.297

Notes: SE in parentheses. Variables in logs. Capital investment includes non-residential structures and equipment. Capital aggregates based on base-year indexes. Variables are gross of capital depreciation. ***, **, * significant at 1, 5 and 10%.

Model	Econometric procedure	Data	Results
			00000000000000000

Effects over different time intervals

		1	2	3	4
		1860-2015	1860-1945	1945-2015	1970-2015
R&D investment/GDP	SR&D	0.029*** (0.010)	0.089*** (0.012)	0.054*** (0.010)	0.149*** (0.014)
${\sf Capital\ investment}/{\sf GDP}$	s _K	0.154*** (0.007)	0.045*** (0.005)	0.668*** (0.017)	0.761*** (0.024)
Income growth	g'	-0.050*** (0.005)	-0.025*** (0.003)	-0.047*** (0.005)	-0.632*** (0.056)
Obs. R-squared		3,276 0.318	1,785 0.283	1,470 0.635	945 0.714

Notes: SE in parentheses. Variables in logs. Capital investment includes non-residential structures and equipment. Capital aggregates based on base-year indexes. Variables are gross of capital depreciation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

***, **, * significant at 1, 5 and 10%.

Model ooooooo	Econometric procedure	Data 0000	Results 000●000000000
Parameter het	erogeneity across	countries / time	
(1860-2015)			

		1	2	3
R&D investment/GDP	s _{R&D}	0.029**	0.064*	0.144***
		(0.009)	(0.032)	(0.010)
Capital investment/GDP	s _K	0.154***	0.200***	0.277***
		(0.007)	(0.059)	(0.015)
Income growth	g'	-0.050***	-0.019**	-0.066***
		(0.005)	(0.009)	(0.025)
Heterogeneity		No	Country	Country/Time
CSD		CCE	CCE	CCE
Estimator		OLS	MG-OLS	MO-OLS
Observations		3,276	3,066	3,276

Notes: SE in parentheses. Variables in logs. Capital investment includes non-residential structures and equipment. Capital aggregates based on base-year indexes. Variables are gross of capital depreciation. ***, ***, *significant at 1, 5 and 10%.

Model	Econometric procedure	Data	Results
0000000		0000	0000000000000
Simultaneit			

- **ARDL**: consistent estimates in dynamic setting (Chudik et al. 2016)
- IV estimates: impact of endogenous variables predicted using external instruments within a static (first-step) specification and predicted values used in our dynamic (CSDL) model, bootstrapping standard errors (Bloom et al. 2013)

Model	Econometric procedure	Data	Results
0000000		0000	00000●0000000
IV estimates			

- The impact of s_{R&D} and s_K is predicted exploiting variation in natural disasters that hit the other countries of the sample from 1900 (source: EM-DAT).
- Natural disasters are of various types (earthquake, storms, etc.) and can be classified into two main groups: geological and climatic (Skidmore and Toya 2002).
- The number of natural disasters are weighted by the inverse of the distance between countries (source: CEPII)
- <u>Identification</u>: External disasters reduce demand for domestic products and thus incentives to invest **at home**, lowering income growth (Fomby et al. 2013).
- Income growth is endogenous to innovation and hence is predicted by the rate of patenting (domestic and foreign).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Model	Econometric procedure	Data	Results
ooooooo	000	0000	0000000000000
ARDL and IV e	estimates		

		1	2	3	4	5
		CSDL	ARDL	CSDL	CSDL	CSDL
				Instru	mented - 2nd	I STEP
R&D investment/GDP Capital investment/GDP	s _{R&D} s _K	0.029*** 0.154***	0.200* 0.335***	s _{R&D} 0.220** 0.142*	<i>s_K</i> 0.052*** 0.122*	g 0.029** 0.129***
Income growth	g	-0.050***	-0.143***	-0.050***	-0.016***	-0.141***
Instrument 1 Instrument 2				-0.009*** -0.028***	1st STEP -0.014*** -0.020***	0.020*** -0.004***
				19.79	F-test 11.35	12.00
				Land movements Climatic	Landslides Storms	Dom. patenting Foreign patenting
Obs.		3,276	2,436	2,436	2,436	2,436

0.988

0.293

Variables in logs. Country-specific FE included. ***, **, * significant at 1, 5 and 10%.

0.319

R-squared

0.198

0.222

- Theory: Piketty theory characterized within a Schumpeterian growth framework
- Empirics (long run): Wealth-to-income driven by research investment. However, when successful, R&D delivers more innovations and these promote growth and reduce β
- Policy implications: Need to remove factors reducing research efficiency (product/labour/financial market regulation) and to increase research quality (better higher education system). Unreported short-run VAR analysis indicates expansionary policies expanding g have only temporary effects on wealth inequality.

Model	Econometric procedure	Data	Results
000000	000	0000	000000000000000

Thanks for your attention

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Model	Econometric procedure	Data	Results
ooooooo	000	0000	000000000000000
β in the short	run (1970-2015) VAR	analysis (1)	

Granger-causality test

Dep: s _{R&D}	chi2	df	p-value
s _K	2.279	2	0.320
g	4.146	2	0.126
β	0.346	2	0.841
ALL	14.75	6	0.0220
Dep: s _K			
s _{R&D}	2.357	2	0.308
g	7.665	2	0.022
β	9.452	2	0.009
ALL	112.161	6	0.000
Dep: g			
s _{R&D}	10.685	2	0.005
s _K	1.524	2	0.467
β	9.125	2	0.010
ALL	45.253	6	0.000
Dep: β			
SR&D	11.367	2	0.003
5 _K	6.162	2	0.046
g	5.777	2	0.056
ALL	41.254	6	0.000

Orthogonalized Impulse Response Function

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Model	Econometric procedure	Data	Results
ooooooo		0000	0000000000000000
β in the short	run (1970-2015) - VAI	R analysis (3)	

Forecast-error variance decomposition (FEVD)

Dep: SR&D	SR&D	5K	g	β
0	0.000	0.000	0.000	0.000
1	1.000	0.000	0.000	0.000
2	0.990	0.001	0.009	0.000
5	0.931	0.016	0.050	0.003
10	0.840	0.061	0.086	0.013
Den: su	504.0	E 11	σ	в
0	0.000	0.000	0 000	0,000
1	0.000	0.000	0.000	0.000
2	0.001	0.959	0.000	0.000
2	0.004	0.954	0.040	0.002
5	0.018	0.890	0.071	0.021
10	0.062	0.856	0.059	0.022
Den' ø	501.0	SIZ	σ	ß
Dep: g 0	s _{R&D} 0.000	<i>s_K</i> 0.000	g 0.000	$\beta \\ 0.000$
Dep: g 0 1	s _{R&D} 0.000 0.030	<i>s_K</i> 0.000 0.075	g 0.000 0.894	β 0.000 0.000
Dep: g 0 1 2	s _{R&D} 0.000 0.030 0.026	<i>s_K</i> 0.000 0.075 0.066	g 0.000 0.894 0.881	β 0.000 0.000 0.027
Dep: g 0 1 2	s _{R&D} 0.000 0.030 0.026	<i>s_K</i> 0.000 0.075 0.066	g 0.000 0.894 0.881	$egin{array}{c} \beta \\ 0.000 \\ 0.000 \\ 0.027 \end{array}$
Dep: g 0 1 2 5	5 _{R&D} 0.000 0.030 0.026	<i>s_K</i> 0.000 0.075 0.066	g 0.000 0.894 0.881 0.854	β 0.000 0.000 0.027 0.053
Dep: g 0 1 2 5 10	<i>S_{R&D}</i> 0.000 0.030 0.026 0.029 0.043	<i>s_K</i> 0.000 0.075 0.066 0.064 0.064	g 0.000 0.894 0.881 0.854 0.841	β 0.000 0.000 0.027 0.053 0.052
Dep: g 0 1 2 5 10 Dep: β	<i>SR&D</i> 0.000 0.030 0.026 0.029 0.043	5 _K 0.000 0.075 0.066 0.064 0.064	g 0.000 0.894 0.881 0.854 0.841	β 0.000 0.000 0.027 0.053 0.052 β
Dep: g 0 1 2 5 10 Dep: β 0	<i>S_{R&D}</i> 0.000 0.030 0.026 0.029 0.043 <i>S_{R&D}</i> 0.000	s_K 0.000 0.075 0.066 0.064 0.064 s_K 0.000	g 0.000 0.894 0.881 0.854 0.841 g 0.000	β 0.000 0.027 0.053 0.052 β 0.000
Dep: g 0 1 2 5 10 Dep: β 0 1	<i>S_{R&D}</i> 0.000 0.030 0.026 0.029 0.043 <i>S_{R&D}</i> 0.000 0.048	s_K 0.000 0.075 0.066 0.064 0.064 s_K 0.000 0.006	g 0.000 0.894 0.881 0.854 0.841 g 0.000 0.689	β 0.000 0.027 0.053 0.052 β 0.000 0.257
Dep: g 0 1 2 5 10 Dep: β 0 1 2	SR&D 0.000 0.030 0.026 0.029 0.043 SR&D 0.000 0.043	<i>s</i> _K 0.000 0.075 0.066 0.064 0.064 <i>s</i> _K 0.000 0.006 0.006	g 0.000 0.894 0.881 0.854 0.841 g 0.000 0.689 0.610	β 0.000 0.000 0.027 0.053 0.052 β 0.000 0.257 0.343
Dep: g 0 1 2 5 10 Dep: β 0 1 2	SR&D 0.000 0.030 0.026 0.029 0.043 SR&D 0.000 0.043	<i>s</i> _K 0.000 0.075 0.066 0.064 0.064 0.064 <i>s</i> _K 0.000 0.006 0.007	g 0.000 0.894 0.881 0.854 0.841 g 0.000 0.689 0.610	β 0.000 0.027 0.053 0.052 β 0.000 0.257 0.343
Dep: g 0 1 2 5 10 Dep: β 0 1 2 5 5	SR&D 0.000 0.030 0.026 0.029 0.043 SR&D 0.000 0.043 0.043 0.043 0.043	S _K 0.000 0.075 0.066 0.064 0.064 S _K 0.000 0.006 0.006 0.007 0.007	g 0.000 0.894 0.881 0.854 0.841 g 0.000 0.689 0.610 0.422	β 0.000 0.000 0.027 0.053 0.052 β 0.000 0.257 0.343 0.447

Model	Econometric procedure	Data	Results
0000000		0000	000000000000
Short run reculte			

- Empirics: β particularly sensitive to shocks income growth (expansive public policies). This effect vanishes over time (halved after 10 years). Shocks in s_K increase β ; however, they also strongly impact on g and hence the detrimental effect of s_K on wealth inequality is somehow reduced. Small effects of shocks in $s_{R\&D}$ on g but not g.
- Policy implications: Expansive policies very short-lived. This confirms importance of structural policies.