Regional Prices Differences and Economic Development Gaps

Petros Milionis

University of Groningen

Groningen Growth and Development Center 25th Anniversary Conference

June 30, 2017

1 / 35

• Regional development has been a vibriant area of research for quite some time.

• Regional development has been a vibriant area of research for quite some time.

• In the recent years, though, there has been a growing interest in regional development patterns.

• Regional development has been a vibriant area of research for quite some time.

• In the recent years, though, there has been a growing interest in regional development patterns.

• This is largely driven by new data and econometric techniques.

• Regional development has been a vibriant area of research for quite some time.

• In the recent years, though, there has been a growing interest in regional development patterns.

• This is largely driven by new data and econometric techniques.

• As a result within-country comparisons have emerged as an important testing ground for economic development theories.

(Gennaioli et al., 2013; Acemoglu et al. 2014)

Petros Milionis () RuG () Reg. Prices Differences & Econ. Dev. Gaps

<ロ> (日) (日) (日) (日) (日)

• Cross-country GDP comparisons are based on GDP figures adjusted for relative prices across countries and time.

• Cross-country GDP comparisons are based on GDP figures adjusted for relative prices across countries and time.

• Regional GDP comparisons do not fully adjust for relative price differences across regions.

• Cross-country GDP comparisons are based on GDP figures adjusted for relative prices across countries and time.

• Regional GDP comparisons do not fully adjust for relative price differences across regions.

• Most available regional GDP statistics are adjusted for prices differences only at the country level.

• Cross-country GDP comparisons are based on GDP figures adjusted for relative prices across countries and time.

• Regional GDP comparisons do not fully adjust for relative price differences across regions.

• Most available regional GDP statistics are adjusted for prices differences only at the country level.

• Yet, prices differ systematically also within countries across regions, as they do across countries.

<ロ> (日) (日) (日) (日) (日)

There is a vast literature on relative price differences and how they vary with economic development. (*Rogoff, 1996; Taylor, 2002; Bergin et al., 2006; Deaton, 2010; Johnson et al. 2013, Feenstra et al., 2015; Inklaar & Prasada-Rao, 2017*)

There is a vast literature on relative price differences and how they vary with economic development. (*Rogoff, 1996; Taylor, 2002; Bergin et al., 2006; Deaton, 2010; Johnson et al. 2013, Feenstra et al., 2015; Inklaar & Prasada-Rao, 2017*)

But this literature focuses on relative price differences across countries.

There is a vast literature on relative price differences and how they vary with economic development. (*Rogoff, 1996; Taylor, 2002; Bergin et al., 2006; Deaton, 2010; Johnson et al. 2013, Feenstra et al., 2015; Inklaar & Prasada-Rao, 2017*)

But this literature focuses on relative price differences across countries.

There is some work on price differences within countries. (*Cecchetti et al. 2002, Crespo-Cuaresma et al. 2007; Rogers, 2007; Reiff & Rumler, 2014*)

There is a vast literature on relative price differences and how they vary with economic development. (*Rogoff, 1996; Taylor, 2002; Bergin et al., 2006; Deaton, 2010; Johnson et al. 2013, Feenstra et al., 2015; Inklaar & Prasada-Rao, 2017*)

But this literature focuses on relative price differences across countries.

There is some work on price differences within countries. (*Cecchetti et al. 2002, Crespo-Cuaresma et al. 2007; Rogers, 2007; Reiff & Rumler, 2014*)

The literature, however, is quite thin and mostly based on US city level data.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

There is a vast literature on relative price differences and how they vary with economic development. (*Rogoff, 1996; Taylor, 2002; Bergin et al., 2006; Deaton, 2010; Johnson et al. 2013, Feenstra et al., 2015; Inklaar & Prasada-Rao, 2017*)

But this literature focuses on relative price differences across countries.

There is some work on price differences within countries. (*Cecchetti et al. 2002, Crespo-Cuaresma et al. 2007; Rogers, 2007; Reiff & Rumler, 2014*)

The literature, however, is quite thin and mostly based on US city level data.

Beyond the US case we don't know much about regional price differences

• Considers the importance of interregional price differences for a wide range of countries.

-

Image: A match a ma

- Considers the importance of interregional price differences for a wide range of countries.
- Provides some direct evidence for within-country price differences.

- Considers the importance of interregional price differences for a wide range of countries.
- Provides some direct evidence for within-country price differences.
- Performs indirect corrections via the short-cut method.

- Considers the importance of interregional price differences for a wide range of countries.
- Provides some direct evidence for within-country price differences.
- Performs indirect corrections via the short-cut method.
- Constructs price-adjusted real GDP series at the regional level.

- Considers the importance of interregional price differences for a wide range of countries.
- Provides some direct evidence for within-country price differences.
- Performs indirect corrections via the short-cut method.
- Constructs price-adjusted real GDP series at the regional level.
- Assesses how these price corrections affect key conclusions about regional economic development.

Main Findings

Petros Milionis () RuG () Reg. Prices Differences & Econ. Dev. Gaps

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Regional price differences are found to be sizeable.

< ロ > < 同 > < 三 > < 三

- Regional price differences are found to be sizeable.
- On the Penn effect can be seen also at the regional level.

▶ **∢ ∃** ▶

- Regional price differences are found to be sizeable.
- Interprete Penn effect can be seen also at the regional level.
- Adjusting for regional prices differences reduces measured within-country income differences.

- Regional price differences are found to be sizeable.
- Interprete Penn effect can be seen also at the regional level.
- Adjusting for regional prices differences reduces measured within-country income differences.
- It also weakens evidence regarding income convergence across regions.

- Regional price differences are found to be sizeable.
- Interprete Penn effect can be seen also at the regional level.
- Adjusting for regional prices differences reduces measured within-country income differences.
- It also weakens evidence regarding income convergence across regions.

Current analysis focus on EU regions.

- Regional price differences are found to be sizeable.
- Interprete Penn effect can be seen also at the regional level.
- Adjusting for regional prices differences reduces measured within-country income differences.
- It also weakens evidence regarding income convergence across regions.

Current analysis focus on EU regions.

Eventually it will be extended to a global level.

• Consider inter-state comparisons in the US as a baseline.

▶ < ≣ ▶

- Consider inter-state comparisons in the US as a baseline.
- Contrast NUTS-2 EU regions with US states.

- Consider inter-state comparisons in the US as a baseline.
- Contrast NUTS-2 EU regions with US states.
- Present direct measures of price differences across EU regions.

- Consider inter-state comparisons in the US as a baseline.
- Contrast NUTS-2 EU regions with US states.
- Present direct measures of price differences across EU regions.
- Use the short-cut method to indirectly correct for price differences in the absence of price data for EU regions.

- Consider inter-state comparisons in the US as a baseline.
- Contrast NUTS-2 EU regions with US states.
- Present direct measures of price differences across EU regions.
- Use the short-cut method to indirectly correct for price differences in the absence of price data for EU regions.
- Compare income difference across EU regions with and without price adjustment.

- Consider inter-state comparisons in the US as a baseline.
- Contrast NUTS-2 EU regions with US states.
- Present direct measures of price differences across EU regions.
- Use the short-cut method to indirectly correct for price differences in the absence of price data for EU regions.
- Compare income difference across EU regions with and without price adjustment.
- Show how interregional price adjustment alter results about income convergence.

Interregional Price Differences in the US

Interregional Price Differences in the US

• The US case is an interesting case because:

- (a) is a country for which we have long regional GDP series.
- (b) the BEA provides properly constructed regional price indexes.
Interregional Price Differences in the US

• The US case is an interesting case because:

- (a) is a country for which we have long regional GDP series.
- (b) the BEA provides properly constructed regional price indexes.

• However, conclusions reached by comparing US states may not be generalizeable.

Interregional Price Differences in the US

• The US case is an interesting case because:

- (a) is a country for which we have long regional GDP series.
- (b) the BEA provides properly constructed regional price indexes.

- However, conclusions reached by comparing US states may not be generalizeable.
- The US is a highly integrated and competitive economy.

Interregional Price Differences in the US

• The US case is an interesting case because:

- (a) is a country for which we have long regional GDP series.
- (b) the BEA provides properly constructed regional price indexes.

- However, conclusions reached by comparing US states may not be generalizeable.
- The US is a highly integrated and competitive economy.
- As a result there are strong forces leading to both price and income convergence.

Income Convergence across US States

Penn Effect across US States

Income and Price Differences across US States

Year 2007							
US States							
Mean St. Dev. Min Ma							
Relative GDP per capita (Unadjusted)	1	0.1965	0.6784	1.5658			
Relative GDP per capita (Adjusted)	1	0.1555	0.7505	1.5339			
Relative Price Index (BEA)	1	0.0794	0.8935	1.1991			

3

A D > A B > A B > A

• In the case of EU we focus on NUTS-2 Regions.

3

► < Ξ >

- In the case of EU we focus on NUTS-2 Regions.
- Income differences across NUTS-2 regions are much larger compared to US states.

- In the case of EU we focus on NUTS-2 Regions.
- Income differences across NUTS-2 regions are much larger compared to US states.

Year 2007							
US States							
Mean St. Dev. Min Max							
Relative GDP per capita (Unadjusted)	1	0.1965	0.6784	1.5658			
Relative GDP per capita (Adjusted)	1	0.1555	0.7505	1.5339			
Relative Price Index (BEA)	1	0.0794	0.8935	1.1991			
EU Regions (NUTS-2)							
Relative GDP per capita (252 Regions)	1	0.2997	0.0761	1.6939			
Relative GDP per capita (201 West Regions)	1.1634	0.2162	0.3580	1.6939			

Within-Country Income Differences in the EU

Reg. Prices Differences & Econ. Dev. Gaps

Petros Milionis ()

RuG ()

Direct Evidence

on Regional Price Differences

Petros Milionis () RuG () Reg. Prices Differences & Econ. Dev. Gaps

June 30, 2017 14 / 35

Numbeo Online Price Database

Numbeo Online Price Database

• Crowd-sourced global database of reported consumer prices and other statistics.

• Founded by ex-Google software engineer.

• Collaborative online platform enabling user-shared information.

• Provide 3.7 million price data on a variety of goods.

• Data come primarily from cities.

Numbeo Online Price Database

Examples of Reported Goods							
Meal, Inexpensive Restaurant	One-way Ticket (Local Transport)	1 Pair of Jeans (Levis 501 Or Similar)					
McMeal at McDonalds	Monthly Pass (Regular Price)	1 Summer Dress in a Chain Store					
Domestic Beer (0.5 liter draught	Taxi Start (Normal Tariff)	1 Pair of Nike Running Shoes					
Cappuccino (regular)	Taxi 1km (Normal Tariff)	1 Pair of Men Leather Business Shoes					
Coke/Pepsi (0.33 liter bottle)	Volkswagen Golf 1.4 90 KW Trendline	Apartment (1 bedroom) in City Centre					
Water (0.33 liter bottle)	Utilities (Electricity, Heating, Water, Garbage)	Apartment (3 bedrooms) in City Centre					
Milk (regular), (1 liter)	1 min. of Prepaid Mobile Tariff Local	Price per Square Meter to Buy Apartment in City Centre					
Loaf of Fresh White Bread (500g	Internet (10 Mbps, Unlimited Data, Cable/ADSL)	Tennis Court Rent (1 Hour on Weekend)					
Rice (white), (1kg)	Fitness Club, Monthly Fee	Cinema, International Release, 1 Seat					

3

イロト イヨト イヨト イヨト

Indirect Evidence

on Regional Price Differences

Petros Milionis () RuG () Reg. Prices Differences & Econ. Dev. Gaps

June 30, 2017 22 / 35

• This technique -referred to as the "short-cut" method- has a long history in the international comparison literature (Kravis, Heston & Summers, 1978, 1982; Prados, 2000, Klasing & Milionis, 2014).

- This technique -referred to as the "short-cut" method- has a long history in the international comparison literature (Kravis, Heston & Summers, 1978, 1982; Prados, 2000, Klasing & Milionis, 2014).
- The link between relative price differences and relative income levels (Penn Effect) implies that the relationship:

$$\frac{y_{i,t}^{PPP}}{y_{j,t}^{PPP}} = f(\frac{y_{i,t}^{nPPP}}{y_{j,t}^{nPPP}}, pricelsolation_{i,t})$$

- This technique -referred to as the "short-cut" method- has a long history in the international comparison literature (Kravis, Heston & Summers, 1978, 1982; Prados, 2000, Klasing & Milionis, 2014).
- The link between relative price differences and relative income levels (Penn Effect) implies that the relationship:

$$rac{y_{i,t}^{PPP}}{y_{j,t}^{PPP}} = f(rac{y_{i,t}^{nPPP}}{y_{j,t}^{nPPP}}, pricelsolation_{i,t})$$

• So if $f(\cdot, \cdot)$ was known, it could be employed to predict $\frac{y_{j,t}^{PPP}}{y_{j,t}^{PPP}}$ from $\frac{y_{i,t}^{nPPP}}{y_{j,t}^{nPPP}}$ and *pricelsolation*_{i,t}.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- This technique -referred to as the "short-cut" method- has a long history in the international comparison literature (Kravis, Heston & Summers, 1978, 1982; Prados, 2000, Klasing & Milionis, 2014).
- The link between relative price differences and relative income levels (Penn Effect) implies that the relationship:

$$rac{y_{i,t}^{PPP}}{y_{j,t}^{PPP}} = f(rac{y_{i,t}^{nPPP}}{y_{j,t}^{nPPP}}, pricelsolation_{i,t})$$

• So if $f(\cdot, \cdot)$ was known, it could be employed to predict $\frac{y_{j,t}^{PPP}}{y_{j,t}^{PPP}}$ from $\frac{y_{i,t}^{nPPP}}{y_{j,t}^{nPPP}}$ and *pricelsolation*_{i,t}.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• Specify a long-linear $f(\cdot, \cdot)$:

$$\ln \frac{y_{i,t}^{PPP}}{y_{US,t}^{PPP}} = \alpha + \beta_1 \ln \frac{y_{i,t}^{nPPP}}{y_{US,t}^{nPPP}} + \beta_2 (\ln \frac{y_{i,t}^{nPPP}}{y_{US,t}^{nPPP}})^2 + \beta_2 (\ln \frac{y_{i,t}^{nPPP}}{y_{US,t}^{nPPP}})^3 + \beta_3 \ln \frac{Pop_{i,t}}{Pop_{US,t}} + \beta_4 \ln \frac{Area_{i,t}}{Area_{US,t}} + \beta_5 \ln LandLock_i + \varepsilon_{i,t}.$$

(a)

• Specify a long-linear $f(\cdot, \cdot)$:

$$\begin{split} \ln \frac{y_{i,t}^{PPP}}{y_{US,t}^{PPP}} &= \alpha + \beta_1 \ln \frac{y_{i,t}^{nPPP}}{y_{US,t}^{nPPP}} + \beta_2 (\ln \frac{y_{i,t}^{nPPP}}{y_{US,t}^{nPPP}})^2 + \beta_2 (\ln \frac{y_{i,t}^{nPPP}}{y_{US,t}^{nPPP}})^3 + \\ &+ \beta_3 \ln \frac{Pop_{i,t}}{Pop_{US,t}} + \beta_4 \ln \frac{Area_{i,t}}{Area_{US,t}} + \beta_5 \ln LandLock_i + \varepsilon_{i,t}. \end{split}$$

• Allow β_1 and β_2 to also vary with the level of development and the exchange rate regime.

• Specify a long-linear $f(\cdot, \cdot)$:

$$\begin{split} \ln \frac{y_{i,t}^{PPP}}{y_{US,t}^{PPP}} &= \alpha + \beta_1 \ln \frac{y_{i,t}^{nPPP}}{y_{US,t}^{nPPP}} + \beta_2 (\ln \frac{y_{i,t}^{nPPP}}{y_{US,t}^{nPPP}})^2 + \beta_2 (\ln \frac{y_{i,t}^{nPPP}}{y_{US,t}^{nPPP}})^3 + \\ &+ \beta_3 \ln \frac{Pop_{i,t}}{Pop_{US,t}} + \beta_4 \ln \frac{Area_{i,t}}{Area_{US,t}} + \beta_5 \ln LandLock_i + \varepsilon_{i,t}. \end{split}$$

- Allow β_1 and β_2 to also vary with the level of development and the exchange rate regime.
- Estimate this equation based on the Penn World Table data and alternative based on the US state data from BEA.

• Specify a long-linear $f(\cdot, \cdot)$:

$$\begin{split} \ln \frac{y_{i,t}^{PPP}}{y_{US,t}^{PPP}} &= \alpha + \beta_1 \ln \frac{y_{i,t}^{nPPP}}{y_{US,t}^{nPPP}} + \beta_2 (\ln \frac{y_{i,t}^{nPPP}}{y_{US,t}^{nPPP}})^2 + \beta_2 (\ln \frac{y_{i,t}^{nPPP}}{y_{US,t}^{nPPP}})^3 + \\ &+ \beta_3 \ln \frac{Pop_{i,t}}{Pop_{US,t}} + \beta_4 \ln \frac{Area_{i,t}}{Area_{US,t}} + \beta_5 \ln LandLock_i + \varepsilon_{i,t}. \end{split}$$

- Allow β_1 and β_2 to also vary with the level of development and the exchange rate regime.
- Estimate this equation based on the Penn World Table data and alternative based on the US state data from BEA.
- Use the estimated relationship to make out-of-sample predictions of $y_{i,t}^{PPP}$ for EU regions using the $y_{i,t}^{nPPP}$ of Eurostat.

Short-Cut Estimation Results

Dependent Variable	PPP-Adjusted Per Capita GDP Relative to US					
Data		Penn World Tables 8 B				
Estimation Method	GLS	GLS	GLS	GLS	GLS	
In(y_nPPP)	0.288***	0.304***	0.244***	0.328***	0.821***	
	(0.0281)	(0.0309)	(0.0285)	(0.0752)	(0.0138)	
In(y_nPPP)^2	-0.163***	-0.0475	0.0331	0.113	0.0986***	
	(0.0430)	(0.0524)	(0.0409)	(0.0883)	(0.0151)	
In(yPPP)^3	0.0200***	0.00982*	0.0775***	0.0540***	-0.0162***	
	(0.00590)	(0.00580)	(0.00961)	(0.0135)	(0.00274)	
In(Population)	-0.0663***	-0.0225***	-0.0661***	-0.0613***	0.0185***	
	(0.00445)	(0.00439)	(0.0101)	(0.0159)	(0.00196)	
In(Area)	-0.464***	-0.0192	0.170***	0.144***	0.0444***	
	(0.0255)	(0.0265)	(0.0202)	(0.0272)	(0.00422)	
Currency Regime	0.0914***	0.107***	0.0152	0.0541		
	(0.0144)	(0.0243)	(0.0121)	(0.0511)		
In(y_nPPP) x Currency Regime	0.0402***	0.101***	-0.0437**	-0.00964		
	(0.0125)	(0.0206)	(0.0221)	(0.0660)		
In(y_nPPP)^2 x Currency Regime	0.000969	0.0162***	-0.0244***	-0.0162		
	(0.00247)	(0.00384)	(0.00849)	(0.0234)		
Periphery	0.276***	0.283***	0.366***	0.119*	0.0387	
	(0.0208)	(0.0326)	(0.0226)	(0.0657)	(0.0533)	
In(y nPPP) x Periphery	0.561***	0.512***	0.594***	0.314***	0.285	
	(0.0329)	(0.0411)	(0.0371)	(0.0928)	(0.342)	
In(y_nPPP)^2 x Periphery	0.227***	0.0605	0.0795*	-0.0691	0.448	
	(0.0430)	(0.0522)	(0.0407)	(0.0862)	(0.530)	
Adj. R-squared	0.865	0.914	0.974	0.948	0.953	
Observations	8,625	1,873	1,246	270	255	
Countries/Regions	188	188	27	27	51	
GLS estimation corrects for heteroskedasticity and serial correlation within panels.						
Standard errors in brackets; *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$						

500

Petros Milionis () RuG () Reg.

Short-Cut Estimation Results

Dependent Variable	PI	PPP-Adjusted Per Capita GDP Relative to US				
Data		Penn World Tables 8 BEA				
Estimation Method	GLS	GLS	GLS	GLS	GLS	
In(y_nPPP)	0.288***	0.304***	0.244***	0.328***	0.821***	
	(0.0281)	(0.0309)	(0.0285)	(0.0752)	(0.0138)	
In(y_nPPP)^2	-0.163***	-0.0475	0.0331	0.113	0.0986***	
	(0.0430)	(0.0524)	(0.0409)	(0.0883)	(0.0151)	
In(yPPP)^3	0.0200***	0.00982*	0.0775***	0.0540***	-0.0162***	
	(0.00590)	(0.00580)	(0.00961)	(0.0135)	(0.00274)	
In(Population)	-0.0663***	-0.0225***	-0.0661***	-0.0613***	0.0185***	
	(0.00445)	(0.00439)	(0.0101)	(0.0159)	(0.00196)	
In(Area)	-0.464***	-0.0192	0.170***	0.144***	0.0444***	
. ,	(0.0255)	(0.0265)	(0.0202)	(0.0272)	(0.00422)	
Currency Regime	0.0914***	0.107***	0.0152	0.0541		
	(0.0144)	(0.0243)	(0.0121)	(0.0511)		
In(y_nPPP) x Currency Regime	0.0402***	0.101***	-0.0437**	-0.00964		
	(0.0125)	(0.0206)	(0.0221)	(0.0660)		
In(y_nPPP)^2 x Currency Regime	0.000969	0.0162***	-0.0244***	-0.0162		
	(0.00247)	(0.00384)	(0.00849)	(0.0234)		
Periphery	0.276***	0.283***	0.366***	0.119*	0.0387	
	(0.0208)	(0.0326)	(0.0226)	(0.0657)	(0.0533)	
In(y_nPPP) x Periphery	0.561***	0.512***	0.594***	0.314***	0.285	
	(0.0329)	(0.0411)	(0.0371)	(0.0928)	(0.342)	
In(y_nPPP)^2 x Periphery	0.227***	0.0605	0.0795*	-0.0691	0.448	
	(0.0430)	(0.0522)	(0.0407)	(0.0862)	(0.530)	
Adj. R-squared	0.865	0.914	0.974	0.948	0.953	
Observations	8,625	1,873	1,246	270	255	
Countries/Regions	188	188	27	27	51	
GLS estimation corrects for heteroskedasticity and serial correlation within panels.						
Standard errors in brackets; *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$						

590

Petros Milionis () RuG ()

Reg. Prices Differences & Econ. Dev. Gaps

June 30, 2017 26 / 35

Adjusted Regional Income Differences

Adjusted Regional Income Differences

Year 2007						
EU Regions (NUTS-2)						
Shares of Variance Explained						
GDP per capita Measure	Overall	Within	Between			
Country-Price Adjusted	45.51%	100.00%	34.52%			
Region-Price Adjusted	30.74%	39.51%	29.24%			

3

(a)

Adjusted Regional Income Differences

Year 2007						
EU Regions (NUTS-2)						
Shares of Variance Ex	plained					
GDP per capita Measure	Overall	Within	Between			
Country-Price Adjusted	45.51%	100.00%	34.52%			
Region-Price Adjusted	30.74%	39.51%	29.24%			
Variance Decomposition						
GDP per capita Measure	Overall	Within	Between			
Nominal	100.00%	37.00%	63.00%			
Country-Price Adjusted	100.00%	56.00%	43.00%			
Region-Price Adjusted	100.00%	29.00%	71.00%			

3

(a)

Implications for

Income Convergence

Petros Milionis () RuG () Reg. Prices Differences & Econ. Dev. Gaps

June 30, 2017 30 / 35

Growth Regression Setup

We test for within-country income convergence using the panel growth regression setup:

$$g_{i,c,t}^{\gamma} = \alpha_0 + \beta \ln y_{i,c,t-1} + \gamma' X_{i,c,t} + \delta_c + \delta_t + \varepsilon_{i,c,t},$$

- $y_{i,c,t}$: GDP per capita adjusted for regional price differences.
- X_{*i*,*c*,*t*} : various regional controls
- Frequency: overlapping 3-year periods
- Sample Period: 2000-2013

個 ト イヨ ト イヨ ト う 日 う つ つ つ

Growth Regressions Results

Dependent Variable	3-year-average growth rate of GDP per capita			
Price Adjustment		Across Countri	es	
GDP per capita (t-1)	-0.00296	-0.00936***	-0.0133**	
	(0.00269)	(0.00354)	(0.00582)	
Pop. Growth		-0.0908***	-0.0948***	
		(0.0199)	(0.0198)	
Investment Share		0.0144***	0.0181***	
		(0.00524)	(0.00532)	
Tert. Schooling			0.00671***	
			(0.00155)	
Agricultural Share			-0.0706***	
			(0.0226)	
Adj. R-squared	0.56	0.59	0.62	
Observations	1,601	1,601	1,601	
Number of regions	245	245	245	

Regression include country and time fixed effects. Driscoll-Kraay standard errors in parentheses.

*** p<0.01, ** p<0.05, * p<0.1.

- 3

Growth Regressions Results

Dependent Variable	3-year-average growth rate of GDP per capita					
Price Adjustment	Across Countries		Across and Within Countries			
GDP per capita (t-1)	-0.00296	-0.00936***	-0.0133**	-0.00491	-0.00357	-0.00192
	(0.00269)	(0.00354)	(0.00582)	(0.00814)	(0.00459)	(0.00672)
Pop. Growth		-0.0908***	-0.0948***		-0.0972***	-0.0784**
		(0.0199)	(0.0198)		(0.0373)	(0.0368)
Investment Share		0.0144***	0.0181***		0.00505	-0.00794
		(0.00524)	(0.00532)		(0.0101)	(0.0102)
Tert. Schooling			0.00671***			-0.00147
			(0.00155)			(0.00246)
Agricultural Share			-0.0706***			0.00373
			(0.0226)			(0.0426)
Adj. R-squared	0.54	0.59	0.63	0.73	0.76	0.78
Observations	1,601	1,601	1,601	1,601	1,601	1,601
Number of regions	245	245	245	245	245	245

Regression include country and time fixed effects. Driscoll-Kraay standard errors in parentheses.

*** p<0.01, ** p<0.05, * p<0.1.

- 3
Summary of Findings

This paper investigates the role of regional price difference for economic development and finds that:

- Direct and indirect measures suggest that price differences at the regional level are sizeable.
- 2 Richer regions tend to have higher prices in line with the Penn effect.
- Not adjusting for regional prices differences leads to:
 - (a) an overstatement of within-country income differences.
 - (b) a bias towards higher convergence rates across regions.

June 30, 2017

34 / 35

These findings imply that proper quantification of regional income differences requires good information on regional price differences.

Next Steps

Next Steps

• Extend analysis beyond EU regions to a global sample.

2 Conduct analysis at different levels of aggregation.

Ompare with luminosity data.

Assess implications for income-level regression analysis.

Ssess implications for growth and development accounting exercises.