Introduction	Literature review	Methodology	Data	Results	Conclusions

Health and development during the 20th century

Daniel Gallardo Albarrán University of Groningen

Groningen Growth and Development Center 25th Anniversary Conference

29-06-2017

Introduction	Literature review	Methodology	Data	Results	Conclusions
Outline					

- 1 Introduction
- 2 Literature review
- 3 Methodology
- 4 Data

Introduction	Literature review	Methodology	Data	Results	Conclusions
Outline					

- Introduction
- 2 Literature review
- 3 Methodology
- 4 Data
- 5 Results
- 6 Conclusions

Introduction	Literature review	Methodology	Data	Results	Conclusions

Introduction	Literature review	Methodology	Data	Results	Conclusions

Introduction	Literature review	Methodology	Data	Results	Conclusions

RQ: What is the impact of health on economic growth?

Daniel Gallardo Albarrán

Introduction	Literature review	Methodology	Data	Results	Conclusions
Outline					

Introduction

2 Literature review

3 Methodology

4 Data

5 Results

6 Conclusions

Health and economic growth in the 20th century

- Cross-country growth regressions (post-1940 period)
 - Bloom, Canning, and Sevilla (2004); Acemoglu and Johnson (2007); Cervellati and Sunde (2001)
 - Ø Most studies find a positive effect of health on economic growth
- Long-term analyses
 - Fogel (1994); Arora (2001); Floud et al. (2011)
 - Positive correlation between health and economic growth. Health improvements increased the pace of growth around 30 percent

Health and economic growth in the 20th century

- Cross-country growth regressions (post-1940 period)
 - Bloom, Canning, and Sevilla (2004); Acemoglu and Johnson (2007); Cervellati and Sunde (2001)
 - Positive effect of health on economic growth
 - Sestimates may be biased if IV approaches do not fully tackle endogeneity concerns (Weil, 2007)
 - Focus on post-1950 period
- Long-term analyses
 - I Fogel (1994); Arora (2001), Floud et al. (2011)
 - 2 Health improvements increased the pace of growth around 30 percent
 - **③** Small sample of developed countries

This study uses a level accounting framework that includes health (Weil, 2007)

Contribution to the literature:

- Cross-country regression studies
 - Provide unbiased country-level estimates of the importance of health for income levels
 - 2 Consider longer time span to fully cover the health transition
- Economic history studies
 - Consider many more countries (especially less-developed ones)
 - Pocus on GDP levels during the 20th century

Contribution to the literature

- Level and growth accounting literature
 - I created a new dataset of physical capital stocks for 40 countries
 - 2 Test the framework proposed in Weil (2007) with new data, further benchmarks and alternative measures of health
 - Examine the role of proximate determinants of income in the past (Hall and Jones, 1999; Caselli, 2005; Hsieh and Klenow, 2010)

Introduction	Literature review	Methodology	Data	Results	Conclusions
Outline					

- Introduction
- 2 Literature review
- ③ Methodology
- 4 Data
- 6 Results
- 6 Conclusions

$$Y_i = A_i K_i^{\alpha} (H_i)^{1-\alpha} \tag{1}$$

where A is productivity, K is capital per worker, H is human capital and α is the elasticity of output with respect to capital.

$$H_i = h_i v_i L_i \tag{2}$$

where L is the number of workers, h is human capital in the form of education and v is human capital in the form of health.

Success measure based on Caselli (2005)

Consider that
$$y_{kh} = k^{\alpha} h^{1-\alpha}$$
 and $y_{kh\nu} = k^{\alpha} h^{1-\alpha} \nu^{1-\alpha}$:

$$Success_{Caselli_excl.health} = \frac{var[log(y_{kh})]}{var[log(y)]}$$
(3)
$$Success_{Caselli_incl.health} = \frac{var[log(y_{khv})]}{var[log(y)]}$$
(4)

 $Success_{Caselli_based} = Success_{Caselli_incl_health} - Success_{Caselli_excl_health}$ (5)

Introduction	Literature review	Methodology	Data	Results	Conclusions
Outline					

- Introduction
- 2 Literature review
- Methodology

5 Results

6 Conclusions

Introduction	Literature review	Methodology	Data	Results	Conclusions
Data sou	rces				

Data for six benchmark years (and 36 countries): 1900, 1929, 1955, 1973, 1990 and 2008

- Income per capita: Bolt and van Zanden (2014) and PWT 9.0
- Physical capital: own data and PWT 9.0
- Life expectancy: World Population Prospects (United Nations), World Development Indicators (World Bank) and Clio Infra Database (Riley, 2005)
- Years of education: Clio Infra database and Barro and Lee (2013)
- Returns to schooling and health (Weil, 2007)

A new dataset of historical physical capital

- Methodology: perpetual inventory method to convert investment flows into stocks for structures and machinery and equipment
- I take into account changes in the relative price of structures and machinery over time
- Sources are the work of economic historians, statistical offices and historical national accounts from every analysed country
- The information is put together, corrected by extraordinary events (e.g. wars) and constructed in a homogeneous way

æ

< □ > < □ > < □ > < □ > < □ >

Introduction	Literature review	Methodology	Data	Results	Conclusions
Outline					

- Introduction
- 2 Literature review
- ③ Methodology

Success measure based on Caselli

Daniel Gallardo Albarrán

Success measure based on Caselli

Daniel Gallardo Albarrán

20 / 44

Consider that
$$y = \frac{K}{Y} \frac{\alpha}{1-\alpha} h A^{\frac{1}{1-\alpha}}$$
; $y_{kh} = \left(\frac{K}{Y}\right)^{\frac{\alpha}{1-\alpha}} h$ and $y_{kh\nu} = \left(\frac{K}{Y}\right)^{\frac{\alpha}{1-\alpha}} h\nu$:

$$Success_{K-RC_excl.health} = \frac{var[log(y_{kh})] + cov[log(A), log(y_{kh})]}{var[log(y)]}$$
(6)

$$Success_{K-RC_incl.health} = \frac{var[log(y_{khv})] + cov[log(A), log(y_{khv})]}{var[log(y)]}$$
(7)

$$Success_{K-RC_based} = Success_{K-RC_incl_health} - Success_{K-RC_excl_health}$$
(8)

Results

Success measure based on Klenow and Rodriguez-Claire

22 / 44

Introduction	Literature review	Methodology	Data	Results	Conclusions
All succe	ess measures				

Introduction	Literature review	Methodology	Data	Results	Conclusions
Using la	rger samples				

24 / 44

ogy

Conclusions

Using ASR instead of life expectancy

	1955	1973	1990	2008
Benchmark sample				
Caselli-based measure	0.11	0.06	0.04	0.05
K-RC-based measure	0.13	0.07	0.05	0.05
Weil-based measure	0.16	0.09	0.07	0.07
69-country sample				
Caselli-based measure	0.09	0.06	0.06	0.06
K-RC-based measure	0.10	0.06	0.07	0.09
Weil-based measure	0.12	0.08	0.09	0.12
121-country sample				
Caselli-based measure	n.d.	0.07	0.06	0.05
K-RC-based measure	n.d.	0.07	0.07	0.06
Weil-based measure	n.d.	0.10	0.09	0.08

25 / 44

Introduction	Literature review	Methodology	Data	Results	Conclusions
Outline					

- Introduction
- 2 Literature review
- ③ Methodology
- 4 Data
- 5 Results

Introduction	Literature review	Methodology	Data	Results	Conclusions
Conclusio	ons				

- Analysis of the explanatory power of health in accounting for cross-country income inequality since 1900
- Main findings
 - The role of health accounting for income differences across countries increases during the period 1900-1950 due to the unequal onset of the health transition
 - Between 1955 and 1990, the fraction of income variance attributable to health decreases due to significant progress in developing economies
 - After 1990, cross-country health differences do not decline and the explanatory power of health in accounting for income variance stays constant

Introduction	Literature review	Methodology	Data	Results	Conclusions

Thanks for your attention!

Introduction	Literature review	Methodology	Data	Results	Conclusions
Using la	rger samples				

 \circ

Introduction	Literature review	Methodology	Data	Results	Conclusions
Using la	rger samples				

Introduction	Literature review	Methodology	Data	Results	Conclusions
Using la	rger samples				

э

Introduction	Literature review	Methodology	Data	Results	Conclusions
Using la	rger samples				

э

Methodology

lology

a

Results

Conclusions

Education and health wage returns

	Schooling (in %)	Height (in %)
Source:		
Psacharopoulos (1994)	13.4, 10.1 & 6.8	
Bleakley et al. (2014)	8.4 & 6.33	0.4-1.2
Schultz (2002)		7-10
Fogel (1994)		7.3
Behrman and Rosenzweig (2004)		3.3
Black et al. (2007)		3.3

lology

.

Results

Conclusions

Model performance (II)

	1900	1929	1955	1970	2000
PWT 66 (108)					
var y			0.8	0.9 (1)	1.4 (1.8)
var k $/$ var y			20	23 (22)	15 (14)
var h / var y			2	2 (2)	1 (1)
var v / var y			2	1(1)	0.7 (1)
var h $+$ v / var y			8	6 (6)	3 (4)
var k $+h+v$ / var y			47	48 (48)	30 (30)

< 行

э

Introduction Literature review Methodology Data Results Conclusions
Health and productivity (I)

$$I_{j} = constant + \gamma_{I}z_{j} + \epsilon_{I,j}$$

$$In(v_{i}) = constant + \gamma_{v}z_{i} + \epsilon_{v,i}$$
(10)

where I is an observable health outcome (e.g. body height or life expectancy) and z is a latent measure of health.

Consider two workers (1 and 2) with the same human capital in terms of education but different levels of health.

$$ln(w_2) - ln(w_1) = \gamma_v(z_2 - z_1)$$
(11)

$$I_2 - I_1 = \gamma_I (z_2 - z_1) \tag{12}$$

Then, the difference in wages is defined by:

$$ln(w_2) - ln(w_1) = \frac{\gamma_v}{\gamma_l} (l_2 - l_1)$$
(13)

$$\frac{\gamma_{\nu}}{\gamma_{LE}} = \frac{\gamma_{\nu}}{\gamma_{height}} \frac{\gamma_{height}}{\gamma_{LE}}$$
(14)

$$height_{i,t} = constant + \gamma_{height} z_{i,t} + \epsilon_{i,t}$$
(15)

$$LE_{i,t} = constant + \gamma_{LE} z_{i,t} + \mu_{i,t}$$
(16)

Rearrange:

$$height_{i,t} = constant + \frac{\gamma_{height}}{\gamma_{LE}} LE_{i,t} + \epsilon_{i,t} + \frac{\gamma_{height}}{\gamma_{LE}} \mu_{i,t}$$
(17)

э

Results

Conclusions

Returns to health (II)

- Life expectancy
 - Sample 1: from 1850 onward for 15 countries
 - Sample 2: decadal data from 1900 to 2000 (up to 95 countries per 2 benchmark)
- Adult Survival Rates
 - Sample 1: from 1850 onward for 15 countries
 - Sample 2: decadal data from 1950 to 2000 (up to 87 countries per benchmark)

dology

Resu

Conclusions

Choosing a different benchmark

Reduced sample	1955	1960
Variation in:		
var y	0.20	0.17
var k / var y	0.21	0.21
var h / var y	0.034	0.039
var v / var y	0.051	0.054
var h $+$ v $/$ var y	0.122	0.129
var k $+h+v$ / var y	0.585	0.581

э

Comparison with other studies

Article	% of var (y) accounted for A
Caselli (2005)	40 (1996)
Weil (2007)	48 (1996)
Own results	48 (1955)

Regression coefficient for LE returns (Time Series)

	(1)	(2)	(3)	(4)
	Height	Height	Height	Height
LE	0.346***	0.337***	0.185***	0.255***
	(30.08)	(53.20)	(6.55)	(10.10)
Year			0.0514***	-0.0310**
			(5.48)	(-2.51)
Year_LE				-0.00152***
				(-8.69)
_cons	152.2***	153.9***	63.29***	222.0***
	(221.30)	(253.92)	(3.82)	(9.65)
City FE	No	Yes	Yes	Yes
ΤE	No	No	No	No
Ν	202	202	202	< □ 202 → < ≡
Daniel Galla	ardo Albarrán	Healt	n and Development	GGDC 25

42 / 44

Regression coefficient for LE returns (Cross Section)

	(1)	(2)	(3)	(4)
	Height	Height	Height	Height
LE	0.202***	0.205***	0.208***	0.208***
	(16.99)	(14.97)	(9.95)	(8.77)
Voor		0 00326	0 00773	0 0121
ICaí		-0.00320	-0.00773	-0.0121
		(-0.47)	(-0.31)	(-0.42)
Year_LE			-0.0000861	-0.0000913
			(-0.19)	(-0.16)
_cons	157.9***	164.1***	172.9***	181.4**
	(230.31)	(12.33)	(3.54)	(3.20)
City FE	No	No	No	No
TE	No	No	No	Yes
Ν	654	654	654	< □)65 <u>4</u> > < ≡
Daniel Galla	ardo Albarrán	Healt	h and Development	GGDC 25

Int	- 12	\sim	-		-1			n
		21		u 4	- 1	. 11	2	

/ 44

Regression coefficient for ASR returns (Time Series)

	(1)	(2)	(3)	(4)
	Height	Height	Height	Height
ASR	0.0350***	0.0361***	0.0158***	[*] 0.0259***
	(23.94)	(48.65)	(5.15)	(9.56)
Year			0.0641***	· -0.0689***
			(6.78)	(-4.36)
Year_ASR				-0.000181***
				(-9.63)
_cons	146.2***	146.6***	37.86**	292.9***
	(132.57)	(188.47)	(2.36)	(9.92)
City FE	No	Yes	Yes	Yes
TE	No	No	No	No
Ν	197	197	197	<pre>< -> < -> 197 > < =></pre>
Daniel Gallardo Albarrán		Health and D	evelopment	GGDC 25th Anniversary

/ 44

Regression coefficient for ASR returns (Cross section)

	(1)	(2)	(3)	(4)
	Height	Height	Height	Height
ASR	0.0162***	0.0151***	0.0164***	0.0166***
	(10.70)	(9.84)	(6.64)	(6.69)
Year		0.0435***	0.00696	-0.00534
		(3.78)	(0.13)	(-0.10)
Year_ASR			-0.0000536	-0.0000675
			(-0.68)	(-0.84)
_cons	158.7***	73.55**	145.8	169.8
	(149.25)	(3.26)	(1.33)	(1.53)
City FE	No	No	No	No
TE	No	No	No	Yes
Ν	495	495	495 🖣 🗆	▶ < # 495 + < =
Daniel Gallardo	o Albarrán	Health and D	evelopment	GGDC 25th Annive