

1

2019002-EEF

On Incremental and Agile
Development of (Information)
Systems

April 2019

Bert de Brock

2

SOM is the research institute of the Faculty of Economics & Business at
the University of Groningen. SOM has six programmes:
- Economics, Econometrics and Finance
- Global Economics & Management
- Innovation & Organization
- Marketing
- Operations Management & Operations Research
- Organizational Behaviour

Research Institute SOM
Faculty of Economics & Business
University of Groningen

Visiting address:
Nettelbosje 2
9747 AE Groningen
The Netherlands

Postal address:
P.O. Box 800
9700 AV Groningen
The Netherlands

T +31 50 363 7068/3815

www.rug.nl/feb/research

3

On Incremental and Agile Development of
(Information) Systems

Bert de Brock
University of Groningen, Faculty of Economics and Business
e.o.de.brock@rug.nl

1

On Incremental and Agile Development of (Information) Systems

Bert de Brock
Faculty of Economics and Business

University of Groningen

PO Box 800, 9700 AV Groningen, The Netherlands

E.O.de.Brock@rug.nl

Abstract
Context:
Obstacles during the development of an information system (IS) are: (1) users have a (sometimes
completely) different language and way of thinking than developers, (2) user wishes are often
unclear (at least initially), and (3) the user wishes also change over time. Moreover, (a) the ‘times
to market’ must be shorter and shorter and (b) the environments are changing quicker and
quicker. Therefore, IS-development methods changed from ‘waterfall’-like to incremental, agile
and even ‘continuous’ over time. Understandability, flexibility, traceability, and development
speed during the development (and evolution) of information systems become more and more
important.
Objective:
This paper aims to further improve understandability, flexibility, traceability, and development
speed during the development (and evolution) of information systems.
Method:
The paper sketches a straightforward development path for the (incremental) development of
functional requirements for (information) systems, from initial user wishes all the way to a
running system. The emphasis is on understandability (by the user resp. developer), flexibility,
traceability, and development speed.
Results:
The development path for a functional requirement proceeds from user stories via use cases and

their system sequence diagrams to a so-called information machine and then to a realization

(implementation), an information system. An evolutionary development path for a whole

system is presented as well. We showed the relationship with the fundamental ANSI-SPARC

three-level architecture, but extended from databases to general information machines. We

presented a series of increments to illustrate the practical application and effects of our theory.

Conclusions:
The development path for a functional requirement enables ‘stepwise clarification’ and
‘stepwise specification’. This improves understandability, flexibility, traceability, and speed of
development. The paper presents a practical theory with very straightforward, transparent,
traceable and incremental/agile development paths for an individual functional requirement
and for a whole system, which naturally lead to modular systems.

Keywords
incremental/agile/continuous development; development path; user story; use case; system sequence

diagram; information machine; property preservation; complete induction for information machines;

information system; ANSI-SPARC three-level architecture

mailto:E.O.de.Brock@rug.nl

2

Introduction

In [1,2] we shortly introduced a straightforward development path for the (incremental) development

of functional requirements for (information) systems, from initial user wishes up to a running system.

In this paper we work out and illustrate that approach in more detail. The development path proceeds

from user stories via use cases and their system sequence diagrams to a so-called information machine

and then to a realization, an information system. We note that for this goal we sometimes had to ‘tune’

these existing notions to one another.

Up to the IM, the development should be implementation-independent. We point out that an IM

could have many different realizations, e.g., by means of a human servant (say a clerk), an ‘SQL servant’

(i.e., a computer with SQL software), or a ‘Java servant’ (i.e., a computer with Java software), for

instance. We will illustrate this by showing how the same IM could be realized by means of a human

servant (e.g., a clerk) or by an ‘SQL servant’.

We will also illustrate how an incremental or agile application of this approach can lead to

modularity and transparency of the resulting system.

The paper is organized as follows: Section 1 contains an introductory example. Section 2 recalls the

background notions user story (US), use case (UC) and system sequence diagram (SSD). Section 3

presents the notion of an information machine (IM): An IM can receive an input and will then produce

an output and might change its state. Section 4 explains how an IM will behave when it receives a

sequence of inputs. Section 5 introduces the notions of property preservation and complete induction

for information machines as a potential means to prove additional state properties of IMs, which we

illustrate with an example. Section 6 sketches the development path from USs via UCs and SSDs to an

IM. An information machine is a blueprint, and can have many different implementations, as Section 7

points out. We call the implementation of an information machine an information system. Section 8

presents some extensions/increments of our running example, and sections 9, 10 and 11 then treat

incremental, agile, and continuous development of (information) systems more generally.

Section 7 also shows the relation with the fundamental ANSI-SPARC three-level architecture, but

now extended from databases to IMs in general: USs, UCs and SSDs belong to the external level, an IM

belongs to the conceptual level, and implementations of an IM belong to the internal level.

 Finally, the appendices illustrate a complete development path for our running example: Appendix

A shows the finally resulting USs, UCs and SSDs (external level), Appendix B the finally resulting IM

(conceptual level), and Appendix C an implementation using an ‘SQL servant’ (internal level). They also

show the traceability and the modularity of the resulting system when developed in this way.

1 An introductory example
We start with a first description of our very simple running example of an information ‘system’:

Example 1: A very simple student administration ‘system’

A fictitious university used to have a very simple student administration in its early days. In the
beginning there were only a few students. The university wanted to register only the name and the
student number of each of its students. This was ‘implemented’ as follows:

Upon request of a university employee a servant could register the name of a new student and
assign a new student number to that student. Therefore, the servant also kept track of the next
unused student number (initially starting with number 1). Once in a while a student left the
university, e.g. because the student finished his* studies. (*: There were no female students in
those days.)

Upon request of a university employee the servant could remove a student with a given
student number from the administration.

Therefore, there were only two kinds of usage (or ‘user stories’) of this ‘system’:

3

US1: A university employee wants to: Register a student with a given name
US2: A university employee wants to: Remove a student with a given student number

These two user stories worked out in more detail (called ‘use cases’):

UC1
1. A university employee (the ‘actor’) asks the servant to register a student with a given name
2. The servant writes down the name (with a quill pen on parchment)
3. The servant assigns the next unused student number to the new student
4. The servant returns the assigned student number to the employee
5. The servant increases the next unused number by 1 (using a slate, a sponge, and a crayon)

UC2
1. A university employee (the ‘actor’) asks the servant to remove a student with a given number
2. The servant strikes out the student info (with an extra thick quill pen on that parchment)
3. The servant tells the employee that he did it (or that the student number was unknown)

2 Background notions: User stories, use cases and system sequence diagrams
We recall some background notions from [1].

Informally speaking, a user story (US) is a ‘wish’ of a (future) user which the system should be able

to fulfil (see also [3] for instance), e.g. the wish of a university employee to register a student. Example

1 contains two user stories, US1 and US2.

A use case (UC) is a text in natural language that describes the steps of a typical usage of the system

(see also [4,5] for instance). Initially, use cases can be produced by (future) users of the system, domain

experts or (other) staff members, or officials from the organization for which the system has to be

built. Initially written use cases might need to be sharpened/enhanced/detailed in order to clarify what

the system should do exactly. A (business) analyst might help to produce sharpened versions of use

cases. Example 1 contains two (already sharpened) use cases, UC1 and UC2.

A system sequence diagram (SSD) of a use case is a ‘diagram’ that depicts the interaction between

the primary actor (user), the system, and its supporting actors (if any), including the messages between

them (see Chapter 10 of [6], for instance). An SSD is a kind of stylised UC that makes the prospective

inputs, state changes, and outputs of the anticipated system more explicit. Although an SSD can be

drawn as a fancy picture (see [6,7], for instance), we only denote its bare essence. Example 2 shows

two SSDs.

We distinguish 3 types of relevant basic interaction steps in SSDs:

User → System: Elucidates the inputs the system can expect (input step)

System → User: Elucidates the outputs the system should produce (output step)

System → System: Elucidates the checks and transitions the system should execute

Example 2: Simplified system sequence diagrams for our student administration system

Example 1 contains two use cases, UC1 and UC2. We present a simplified SSD for each of the two
use cases. In these use cases, the user is a university employee and the ‘system’ is the servant (with
his belongings).

Schematically, with the numbers referring to the UC-steps (and with variables between brackets):

SSD1, for UC1
1. User → System: RegisterStudent(<name>)
2. System → System: write down the name
3. System → System: assign the next unused student number to the new student
4. User ← System: “Assigned student number: ” <number>
5. System → System: increase the next unused student number by 1

4

SSD2, for UC2
1. User → System: RemoveStudent(<number>)
2. System → System: strike out the student info if the student (number) was known
3. User ← System: “Done” or “Unknown student number”

3 Formal modelling: Information machines
We introduce the notion of an information machine:

An information machine is a 5-tuple (I, O, S, G, T) consisting of:
o a set I (of inputs)
o a set O (of outputs)
o a set S (of states)
o a function G: S x I → O, mapping pairs of a state and an input to the corresponding output
o a function T: S x I → S, mapping pairs of a state and an input to the corresponding next state

The notation f: X → Y indicates that f is a function with dom(f) = X and rng(f) Y

(where dom(f) denotes the domain of f and rng(f) denotes the range of f).

We sometimes write fx instead of f(x), especially when f(x) is a function again.

Intermezzo: Comparing machines

Our notion of information machine is equivalent to the notion of data machine in [8].
It is a – not necessarily finite – Mealy machine without a special start state (see [9,10]).
The table below shows for each kind of machine its ingredients and their restrictions:

Ingredient:
Restriction:

set S
S finite

s0 ϵ S set I
I finite

T: S x I → S set O
O finite

G: S x I → O

Mealy [9] + + + + + + + + +

Pieper [8] + + + + +

De Brock + + + + +

We could have chosen for other (but equivalent) forms for G and T: T: I → (S → S) and G: I → (S → O)

Or we could even have chosen for only one (combined) function: F: I → (S → S x O)

In those cases, each input i I leads to a function Ti assigning a ‘new’ state to an ‘old’ state and a

function Gi assigning an output to the ‘old’ state or, in the second case, to a function Fi assigning a

‘new’ state and an output to an ‘old’ state.

If the system also communicates with supporting actors, say other systems, then we still distinguish

three types of relevant basic interaction steps, but with (primary) ‘User’ generalized to ‘Actor’, where

an actor can be any other system. Expressed in terms of an information machine (IM):

Actor → System: Elucidates the needed set I of inputs of the IM

System → Actor: Elucidates the needed set O of outputs and output function G of the IM

System → System: Elucidates the needed set S of states and transition function T of the IM

We informally describe an information machine for our simple student administration from examples

1 and 2. Note that the ingredients follow directly and quite naturally from the SSDs!

Example 3: An information machine for our simple student administration thus far

Below we consecutively introduce the inputs, the outputs, the states, the output function and the
transition function for our information machine.

https://en.wikipedia.org/wiki/Finite_set

5

Schematically, the possible inputs and (corresponding) outputs are (with variables between brackets):

Input Output

RegisterStudent(<name>) “Assigned student number: ” <number>
RemoveStudent(<number>) “Done” or “Unknown student number”, depending on the

 presence resp. absence of the number in the administration

A state essentially consists of 2 components: a table of students (with their name and student
number) and a number, i.e., the next unused student number. As an example:

Next unused student number: 5

Students: Name Number

 J. Smith 1
 A. Adams 2
 J. Brown 3
 I. Jones 4

In this example, student no. 4 already left the university again.

The output function maps a pair of a state and an input to the corresponding output as follows
(where the output might depend on the presence or absence of the number in the student table):

State Input Output Condition Related
SSD + steps

s RegisterStudent(x) “Assigned student number: ” s(NN) SSD1: 1, 4
s RemoveStudent(n) “Done” if n s(ST) ∏ Number SSD2: 1, 3

 “Unknown student number” if n s(ST) ∏ Number SSD2: 1, 3

where s(NN) denotes the next unused student number in state s, s(ST) the student table in state s,

and s(ST) ∏ Number the set of all values in the Number column of the table s(ST), where we define
for a table T and an attribute a of T: T ∏ a = { t(a) | t ϵ T }, i.e., the set of all a-values in table T

In the state above:
- the input RegisterStudent(A. Adams) would lead to the output “Assigned student number: 5”,
- the input RemoveStudent(1) would lead to the output “Done”, and
- the input RemoveStudent(4) would lead to the output “Unknown student number”.

The transition function maps a pair of a state and an input to the corresponding next state as follows:

State Input Next state
Next unused
student number

Next state
Table

Related SSD
plus steps

s RegisterStudent(x) s(NN) + 1 s(ST) { [x; s(NN)] } SSD1: 2, 3, 5
s RemoveStudent(n) s(NN) { t ϵ s(ST) | t(Number) ≠ n } SSD2: 2

where in this case { [x; s(NN)] } denotes the single row with student name x and student number s(NN),
and { t ϵ s(ST) | t(Number) ≠ n } denotes the table s(ST) minus ‘all’ rows with student number n.
(Actually, in Example 5 we will prove that there is at most one row with student number n.)

4 Sequences of inputs and corresponding outputs
If an information machine (IM) receives a sequence of inputs, then the IM goes through a sequence of

states and produces a sequence of outputs. We illustrate this in the next example.

Example 4: A sequence of inputs and corresponding outputs

If our sample IM is in the state shown in Example 3 and receives the three consecutive inputs

6

 RegisterStudent(A. Adams) ; RemoveStudent(1) ; RemoveStudent(4)

then the output sequence would be

 “Assigned student number: 5” ; “Done” ; “Unknown student number”

and the new state would be:

Next unused student number: 6

Students: Name Number

 J. Smith 1
 A. Adams 2
 J. Brown 3
 I. Jones

A. Adams

4
5

In general, each next state is the result of applying the transition function to the combination of the

previous state and the received input, and each next output is the result of applying the output

function to that same combination of the previous state and the received input.

Formally: If an IM (I, O, S, G, T) receives a sequence <i1; i2; …; in> of inputs and initially is in state s0,

then the IM goes through the sequence <s1; s2; …; sn> of states and produces the sequence <o1; o2; …;

on> of outputs where, for all k from 1 up to n, state sk is defined as T(sk-1, ik) and output ok is defined as

G(sk-1, ik).

5 Property preservation and complete induction for information machines
If a property holding for a state also holds for any next state in an information machine, then we say

that that information machine preserves that state property. Defined formally:

An inf. machine (I, O, S, G, T) preserves property P P(s) implies P(T(s,i)) for all s ϵ S and i ϵ I

Complete induction for information machines

If an information machine preserves a property P and starts in a state s0 that has that property, then it

is clear that that information machine will always be in a state with that property.

Example 5: Property preservation and complete induction for our sample information machine

We will prove that our sample information machine preserves the following pair of properties:
(P1) the next unused student number is larger than each student number in the student table, and
(P2) each student number in the student table is unique

P1(s): s(NN) > k for all k ϵ s(ST) ∏ Number
P2(s): The attribute Number is u.i. (uniquely identifying) in the table s(ST)

Note: For a table T and an attribute a of T we define:
a is uniquely identifying in T t ≠ t’ implies t(a) ≠ t’(a) for all t ϵ T and t’ ϵ T

We can prove the preservation of this property pair by using the specification of the transition
function of our information machine, given at the end of Example 3:

State Input Next state
Next unused
student number

Next state
Table

s RegisterStudent(x) s(NN) + 1 s(ST) { [x; s(NN)] }
s RemoveStudent(n) s(NN) { t ϵ s(ST) | t(Number) ≠ n }

7

The proof for P1 runs as follows:
o if i = RegisterStudent(x) then P1(s) – i.e. s(NN) > k for all k ϵ s(ST) ∏ Number –

clearly implies P1(T(s,i)), i.e. s(NN) + 1 > k for all k ϵ s(ST) ∏ Number { s(NN) }
o if i = RemoveStudent(n) then P1(s) – i.e. s(NN) > k for all k ϵ s(ST) ∏ Number –

clearly implies P1(T(s,i)), i.e. s(NN) > k for all k ϵ { t ϵ s(ST) | t(Number) ≠ n } ∏ Number

The proof for P2 now runs as follows (where we need P1 to prove P2 too):
o if i = RegisterStudent(x) then P2(s) – i.e. Number is u.i. in s(ST) –

and P1(s) – i.e. s(NN) > k for all k ϵ s(ST) ∏ Number –
imply P2(T(s,i)), i.e. Number is u.i. in s(ST) { [x; s(NN)] }

o if i = RemoveStudent(n) then P2(s) – i.e. Number is u.i. in s(ST) –
clearly implies P2(T(s,i)), i.e. Number is u.i. in { t ϵ s(ST) | t(Number) ≠ n }

Note that the proof is modular (‘incremental’) w.r.t. the possible inputs.
The following state has the properties P1 and P2 (because s(ST), the student table, is empty):

Next unused student number: 1

Students: Name Number

So, if our information machine starts in this ’empty’ state, then our information machine will always
be in a state with properties P1 and P2 (complete induction for our sample information machine).

6 From user stories via use cases and system sequence diagrams to an IM
Starting from the 2 USs and the UCs (in Example 1) via their corresponding SSDs (in Example 2) we

were able to define our IM (in Example 3). In a scheme (where the arrows indicate what is input for

what):

User Stories

Use Cases

SSDs

Information
Machine

US1 US2
↓ ↓

UC1 UC2
↓ ↓

SSD1 SSD2
↘ ↙

IM

Figure 1: From USs to an IM

We can generalize this scheme as follows (where n could be large):

US1 US2 USn
↓ ↓ ↓

UC1 UC2 UCn
↓ ↓ ↓

SSD1 SSD2 SSDn

↘ ↓ ↙

Short texts in natural language, each describing a ‘wish’ of a (future) user which the
system should be able to fulfil

Texts in natural language, each describing the steps of a typical usage of the system

Diagrams, each depicting for one UC the interactions between the user, the system,
and its supporting actors, including the messages between them

Formal/Conceptual model of the system,
including the messages between the system and its environment

Figure 2: The relation between USs, UCs, SSDs, and an IM

Information Machine

8

7 Realizations/Implementations of an information machine
Information machines can be considered as blueprints. An information machine can have many

different kinds of realizations/implementations. For instance, an information machine can be realized

by a human servant (such as in our running example), by an ‘SQL servant’ (i.e., a computer with SQL

software, as we will describe in Appendix C), or by a ‘OO servant’ (i.e., a computer with OO software).

information machine
↙ or ↓ or ↘

human OO SQL
servant servant servant

Figure 3: Different kinds of realizations of an IM

If we combine this picture with the previous ones then we can indicate the relation with the

fundamental ANSI-SPARC three-level architecture, see e.g. [11,12], but now extended from databases

to information machines in general:

US US
↓ ↓
UC UC
↓ ↓
SSD SSD

↘ ↙

↙ or ↓ or ↘
human OO SQL
servant servant servant

External
Level

Conceptual
Level

Internal
Level

Figure 4: Relation with the ANSI-SPARC three-level architecture

In words: USs, UCs and SSDs belong to the external level, an IM belongs to the conceptual level, and

any realization belongs to the internal level.

So far we already described a realization of our sample information machine by a human servant

(who used a parchment roll and quill pen as well as a slate, sponge, and crayon). In Appendix C we will

describe a realization of the same information machine by means of an ‘SQL servant’.

We are inclined to call the implementation of an information machine an information system (IS).

According to the literature an information system has a Boundary, Users, Processors, Storage, Inputs,

Outputs and Communication networks (see [13,14]).

This all applies to our running example, where the university initially only wanted to register the

name and the student number of each of its students, which determined the initial system boundary.

Furthermore, initially the users were some (authorized) university employees only, the processor is

the servant with his quill pen, sponge, and crayon, the storage consists of the parchment roll and the

slate (which is rewritable), the inputs and outputs were gradually defined in our examples, and the

servant’s box office was the only communication network.

information machine

9

8 Examples of incremental and agile development of an information system
Information systems in practice are really sophisticated, i.e. supporting a lot of use cases, resulting in

very large input sets, output sets, state sets, and with complicated output functions and transition

functions. Moreover, in practice such systems are often under continuous development (‘under

construction’), just as a city for instance.

Instead of defining and developing such a sophisticated information system in one go (‘big bang’),

including ‘all’ functionality that is needed – as might be suggested in Section 6 – such systems are often

defined and developed incrementally, i.e., starting with a simple, small version (as we did) and

extending/adapting it in several small steps into larger, more sophisticated versions.

In the next 3 examples we present some subsequent adaptions of our sample information system.

In terms of the four basic functions known in the literature as CRUD (Create, Read, Update and Delete;

see [15,16] for instance), we already showed a Create (US1) and a Delete (US2). Example 6 shows a

Read and Example 8 shows an Update. Example 7 shows several changes in the structure.

Example 6: Extending our sample ‘system’ (with a Read)

After a while it turned out that university employees sometimes needed to know the student
number of a student. Therefore, another usage of the system emerged. Formulated as a user story:

US3: A university employee wants to Retrieve the student number of a student with a given name

Worked out in more detail, in a use case:

UC3
1. A university employee asks the servant for the student number of a student with a given name
2. The servant searches for all students with that name (maybe students have the same name)
3. The servant returns the corresponding student numbers to the employee

SSD3, for UC3
1. User → System: RetrieveNumber(<name>)
2. System → System: search for all students with that name
3. User ← System: <set of corresponding student numbers>

Now we consecutively introduce the additional inputs and outputs, the state space (i.e., the set of
states), the extension of the output function and the extension of the transition function for our IM.
The additional inputs and (corresponding) outputs of our IM are:

Input Output

RetrieveNumber(<name>) <set of corresponding student numbers>

The state space of our IM remains the same. The output function of our IM is extended as follows:

State Input Output

s RetrieveNumber(x) { t(Number) | t ϵ s(ST) and t(Name) = x }

where { t(Number) | t ϵ s(ST) and t(Name) = x } denotes the set of student numbers of all students
in the student table s(ST) with name x.

In this UC, the state always remains the same, so our transition function is simply extended by

State Input Next state

s RetrieveNumber(x) s

Consequently, our IM preserves all its state properties with this trivial extension. Note that the
extension is ‘incremental’/modular: We did not need to change any existing part of the IM.
In the state shown in Example 4, the input RetrieveNumber(A. Adams) would essentially result in
the output “2, 5”.

10

The next (innocent looking) adaption causes several changes: small ones in two US/UC/SSD-triples and

several in the IM.

Example 7: Another adaption of our sample ‘system’ (changing several existing parts of our IM)

After a few centuries the first female student was allowed to come in (and actually did come in).
Therefore, the university wanted to keep track of the gender of the students as well.

This led to (small) changes in the US1/UC1/SSD1-triple and in the US3/UC3/SSD3-triple. The
changed user stories are given below (changes are underlined). The subsequent changes in the UCs
and SSDs are straightforward then. (They can also be found in Appendix A.)

US1+: A university employee wants to Register a student with a given name and gender
US3+: A university employee wants to Retrieve the student info of a student with a given name

It also led to several changes of the information machine:
o The student table got an extra column, Gender, with 2 possible values: “M” and “F”,

changing the structure of states and hence the state space of our IM
o All existing rows in the student table got the value “M” for Gender,

changing the old current state to the new current state
o The input RegisterStudent(<name>) changed into RegisterStudent(<name>, <gender>) and

the input RetrieveNumber(<name>) changed into RetrieveStudent(<name>), because the
student information was not limited to Number anymore (but included the gender as well).
As a consequence, some of the inputs and (corresponding) outputs of our IM changed:

Input Output

RegisterStudent(<name>, <gender>) “Assigned student number: “ <number>
RetrieveStudent(<name>) <student info of all students with that name>

o The output function of our IM changed as follows:

State Input Output

s RegisterStudent(x, y) “Assigned student number: “ s(NN)
s RetrieveStudent(x) { t ϵ s(ST) | t(Name) = x }

o The transition function of our IM changed as follows:

State Input Next state
Next unused
student number

Next state
Table

s RegisterStudent(x, y) s(NN) + 1 s(ST) { [x; s(NN); y] }
s RetrieveStudent(x) s(NN) s(ST)

where in this case { [x; s(NN); y] } denotes the single row with student name x, student number
s(NN), and gender y.

Directly after the first female student was registered, with say input RegisterStudent(A. Jacobs, F)
and output “Assigned student number: 12345”, the state had the following structure:

Next unused student number: 12346

Students: Name Number Gender

 . . .
:
:
:

. . .
A. Jacobs

. . .
:
:
:

. . .
12345

M
:
:
:

M
F

11

Our servant ’implemented’ all this by writing an ‘M’ or an ‘F’ immediately after each student number
on the parchment roll.

Note that after all these changes the state still has the properties P1 and P2 and our changed IM still
preserves those properties. Phrased informally, these properties were:

P1: The next unused student number is larger than each student number in the student table
P2: Each student number in the student table is unique

Making changes to the IM itself can be considered as the usage of another IM, namely an information

machine that produces information machines. We will come back to this in a later paper.

Example 8: Extending our sample ‘system’ again (with an Update)

After a while it turned out that female students sometimes changed their name (because they got
married). This was something new (…) and led to a new user story, initially formulated as follows:

US4f: Change the name of a female student with a given student number

Shortly after it was realized that such a user story might be useful for male students too, leading to
an adapted, more general user story (simply by deleting the restriction “female”):

US4: Change the name of a female student with a given student number

This leads to an adaption of the use case for user story US4f, with the following result (where deleted
text is struck out and new text is underlined):

UC4
1. A female student asks the servant to register her/his new name, showing the student number
2. The servant changes her the name into the new name (after checking a (marriage) certificate)
3. The servant tells the student that he did it (or that the student number was unknown)

The extension from only female to all students did not really influence the corresponding SSD:

SSD4, for UC4
1. User → System: ChangeNameFemaleStudent(<number>, <new name>)
2. System → System: change the old name into the new name if the student number was known
3. User ← System: “Done” or “Unknown number”

Clearly the additional inputs and (corresponding) outputs of our IM are:

Input Output

ChangeNameStudent(<number>, <new name>) “Done” or “Unknown number”

The state space of our IM remains the same.
The output function of our IM is extended as follows (distinguishing two situations):

State Input Output Condition

s ChangeNameStudent(n, x) “Done” if n s(ST) ∏ Number
 “Unknown number” if n s(ST) ∏ Number

The transition function of our IM is extended as follows:

State Input Next state
Next unused
number

Next state
Table

s ChangeNameStudent(n, x) s(NN) { t | t ϵ s(ST) and t(Number) ≠ n }
{ [x; n; t(Gender)] | t ϵ s(ST) and t(Number) = n }

where in this case [a; b; c] denotes the row with student name a, student number b, and gender c.

12

Our servant ’implemented’ this by striking out the old name (with an extra thick quill pen with
black ink) and writing the new name there with white ink.

Note that after this change the state still has the properties P1 and P2 and our extended IM still
preserves those properties. Also note that the extension is ‘incremental’/modular again: It did not
change any existing part of the IM.

We recall that the 4 basic functions known in the literature as CRUD (Create, Read, Update and Delete)

are now all represented by our user stories:

Name Alternatively used names Examples: Our (latest) user stories

Create Register, Add, Enter US1+: Register a student with a given name and gender

Read Retrieve, View, Show, Search US3+: Retrieve the student info of a student with a given name

Update Change, Modify, Edit, Alter US4 : Change the name of a student with a given student number

Delete Remove, Destroy, Deactivate US2 : Remove a student with a given student number

9 Incremental development of (information) systems
After this series of subsequent extensions and adaptions of our sample information system we will

treat incremental development of (information) systems more generally.

The next picture indicates which examples introduced which user stories, which use cases, which

SSDs and which versions of our IM and IS, and the arrows indicate what constituted input for what.

 Examples → 1, 2, 3 ⁞ 6 ⁞ 7 ⁞ 8

User Stories

Use Cases

SSDs

Information
Machines

Information
Systems

US1 US2

↓ ↓
UC1 UC2

↓ ↓
SSD1 SSD2

↘ ↙
 IMv1 →

↓
 ISv1 →

⁞
⁞
⁞
⁞
⁞
⁞

→

→

US3
↓

UC3
↓

SSD3
↓

IMv2
↓

ISv2

⁞
⁞
⁞
⁞
⁞
⁞

→

→

US1+ US3+

↓ ↓
UC1+ UC3+

↓ ↓
SSD1+ SSD3+

↘ ↙
→ IMv3 →

↓
→ ISv3 →

⁞
⁞
⁞
⁞
⁞
⁞

→

→

US4f
US4
↓

UC4
↓

SSD4
↓

IMv4
↓

ISv4

Figure 5: Incremental development path of our sample information system

It already indicates some structure in our small scale ‘incremental development’:

Via one or 2 USs, UCs and their corresponding SSDs (and the previous IM-version) we defined an initial

(resp. next) version of our IM, and based on the IM (and the previous IS-version) we defined an initial

(resp. next) version of our IS. This can be generalized easily:

User Stories

Use Cases

SSDs

Information
Machines

Information
Systems

US … US
↓ … ↓
UC … UC
↓ … ↓
SSD … SSD

↘ … ↙
 IMv1 →

↓
 ISv1 →

⁞
⁞
⁞
⁞
⁞

→

→

US … US
↓ … ↓
UC … UC
↓ … ↓
SSD … SSD

↘ … ↙
→ IMv2 →

↓
→ ISv2 →

⁞
⁞
⁞
⁞
⁞

→

→

US … US
↓ … ↓
UC … UC
↓ … ↓
SSD … SSD

↘ … ↙
→ IMv3 →

↓
→ ISv3 →

⁞
⁞
⁞
⁞
⁞

→

→

→ ..…

→ ..…

Figure 6: Incremental development path of an information system

13

So, via one or more USs, UCs, and their corresponding SSDs (and the previous version of the IM) we

can define an initial (resp. next) version of the IM, and based on the IM (and the previous IS-version)

we can define an initial (resp. next) version of the IS.

 The order in which the user stories are developed could depend on story size, business value,

possible precedence relations, and uncertainty in velocity prediction, for instance [17].

10 Agile development
One cycle might contain only a few USs, UCs and their corresponding SSDs, maybe even only one US,

UC and SSD. Or maybe even less than one full UC: In a more agile development process a simple ‘core’

scenario (or ‘main success scenario’) of a (yet unclear) ‘full’ UC might be delivered first, followed by

‘fuller’ versions in subsequent cycles (e.g., see [6]). So, existing US/UC/SSD-triples might also be

adapted, like in Example 7. Short cycles especially hold in case of daily/nightly builds (see [18]) and

continuous integration (see [19,20]).

11 Continuous development of (information) systems
Note that such an incremental development can go on ‘forever’. In a sense, this development process

is cyclic and can be (almost) continuous. So, the following picture might be more appropriate:

US . . . US
↓ . . . ↓
UC . . . UC
↓ . . . ↓
SSD . . . SSD

↘ . . . ↙

> │ >
↓

> >

Figure 7: Continuous development path of an information system

The picture tries to express that via one or more USs, UCs, and their corresponding SSDs (and the

previous version of the IM) we can define an initial (resp. next) version of the IM, and based on the IM

(and the previous IS-version) we can define an initial (resp. next) version of the IS.

Results

In this paper we incrementally presented a theory on Incremental development of (information)

systems, starting with simple (‘minimal’) examples and simple notions making the basics clear, and

then gradually introducing more complicated notions and examples.

We placed the notions user story, use case, and system sequence diagram in line and linked them

to the notion of an information machine: The set of SSDs of an application determine the inputs, the

outputs, and the output function of the IM. We depicted a development path from USs via UCs and

SSDs to an IM. We also defined the notions of property preservation and complete induction for

information machines, as a potential means to prove additional state properties of IMs, which we

illustrated with an example.

IM

IS

14

After presenting several extensions of our sample information machine, including examples of all

four CRUD-functions and of structural changes of our information machine, we treated incremental,

agile, and continuous development of (information) systems more generally.

We pointed out that an IM is a blueprint, and we emphasized that it can have completely different

implementations. We call the implementation of an IM an information system. In our examples in the

appendices we show how the user stories directly lead to the input sets of the IM and, when the IM is

implemented in, e.g., SQL how those input sets in turn directly correspond to (stored) procedures.

We also showed the relation with the fundamental ANSI-SPARC three-level architecture but

extended from databases to information machines in general: USs, UCs and SSDs belong to the external

level, an IM belongs to the conceptual level, and implementations of an IM belong to the internal level.

Finally, the appendices illustrate a complete development path for our running example They also

show the traceability and the modularity of the resulting system when developed in this way.

Conclusion
The paper works out a practical theory with a very straightforward, transparent, traceable and

incremental/agile development path: From user stories via use cases and their corresponding system

sequence diagrams to an information machine, and then to a realization, an information system. Our

approach links these notions together by crossing the boundaries of several (sub)disciplines, such as

requirements engineering, machine theory, and (database) systems development. Developing

information systems in this manner can naturally lead to modular systems.

Another contribution of the paper is the formal definition of the notions of property preservation

and complete induction for information machines, as a potential means to prove additional state

properties of information machines.

Current and future work
Situations in practice can be much more complicated. Therefore, we are currently extending our theory

with additional, extended, and/or more complicated issues, such as development patterns, advanced

grammars for SSDs, complicated SSDs, advanced notions and further terminology related to

information machines, and generalization and formalization of CRUD-functions.

In near future we will also work on interacting systems, compound transactions, dynamic

constraints (i.e., constraints on state transitions) and the relation with work flow.

References
[1] E.O. de Brock: Towards a Theory about Continuous Requirements Engineering for Information

Systems, CRE: 4th Workshop on Continuous Requirements Engineering, REFSQ, 2018

[2] E.O. de Brock: Towards a theory about Incremental development of information systems (extended

abstract), ICT.OPEN, 2018

[3] G.G. Lucassen: Understanding User Stories, PhD thesis, Utrecht University, 2017

[4] I. Jacobson et al: Use Case 2.0: The Guide to Succeeding with Use Cases, Ivar Jacobson Int., 2011

[5] https://en.wikipedia.org/wiki/Use_case

[6] C. Larman: Applying UML and patterns, Addison Wesley Professional, 2004

[7] https://en.wikipedia.org/wiki/System_sequence_diagram

[8] F.T.A.M. Pieper: Data machines and interfaces, PhD thesis, TU Eindhoven, 1989

[9] G.H. Mealy: A Method for Synthesizing Sequential Circuits, Bell System Technical J., 1045–1079, 1955

[10] https://en.wikipedia.org/wiki/Mealy_machine

[11] ANSI/X3/SPARC Study Group on DBMS: Interim Report, ACM SIGMOD bulletin, vol. 7.2, 1975

[12] https://en.wikipedia.org/wiki/ANSI-SPARC_Architecture

http://ceur-ws.org/Vol-2075/CRE18_paper4.pdf
http://ceur-ws.org/Vol-2075/CRE18_paper4.pdf
http://www.ictopen.nl/content/Proceedings+2018
https://dspace.library.uu.nl/handle/1874/356784
https://www.ivarjacobson.com/publications/white-papers/use-case-ebook
https://en.wikipedia.org/wiki/Use_case
https://aanimesh.files.wordpress.com/2013/09/applying-uml-and-patterns-3rd.pdf
https://en.wikipedia.org/wiki/System_sequence_diagram
https://pure.tue.nl/ws/files/2488162/305250.pdf
https://ia802705.us.archive.org/12/items/bstj34-5-1045/bstj34-5-1045.pdf
https://en.wikipedia.org/wiki/Mealy_machine
https://portalparts.acm.org/990000/984332/fm/frontmatter.pdf?ip=5.132.43.251
https://en.wikipedia.org/wiki/ANSI-SPARC_Architecture

15

[13] L. Jessup and J. Valacich: Information Systems Today, Pearson, 2008

[14] https://en.wikipedia.org/wiki/Information_system

[15] J. Martin: Managing the Data Base Environment, Prentice Hall, 1983

[16] https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

[17] G. van Valkenhoef et al: Quantitative release planning in extreme programming, Information and

 Software Technology, vol. 53.11, 1227-1235, 2011

[18] https://en.wikipedia.org/wiki/Daily_build

[19] G. Booch: Object-oriented analysis and design with applications, Addison Wesley, 1998

[20] https://en.wikipedia.org/wiki/Continuous_integration

[21] E.O. de Brock: Foundations of Semantic Databases, Prentice Hall, 1995

All links were last accessed on 2018/10/26

https://www.pearson.com/us/higher-education/product/Jessup-Information-Systems-Today-Managing-in-the-Digital-World-3rd-Edition/9780132335065.html
https://en.wikipedia.org/wiki/Information_system
https://books.google.nl/books?id=ymy4AAAAIAAJ&pg=PA381&redir_esc=y
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://www.sciencedirect.com/science/article/abs/pii/S0950584911001340
https://en.wikipedia.org/wiki/Daily_build
http://www.cvauni.edu.vn/imgupload_dinhkem/file/pttkht/object-oriented-analysis-and-design-with-applications-2nd-edition.pdf
https://en.wikipedia.org/wiki/Continuous_integration
https://dl.acm.org/citation.cfm?id=556146

16

Appendix A: Our sample USs, UCs and SSDs

Our latest sample user stories, use cases, and system sequence diagrams

Now we bring together (the latest versions of) our sample USs, UCs, and their corresponding SSDs.
There were four ‘final’ user stories for our ‘system’, together representing the four basic CRUD-
functions, Create, Read, Update and Delete (see [15,16] for instance):

US1+: Register a student with a given name and gender /* Create
US2 : Remove a student with a given student number /* Delete
US3+: Retrieve the student number info of a student with a given name /* Read
US4 : Change the name of a female student with a given student number /* Update

Below, each UC is given, followed by its SSD. Schematically, with the step numbers in the SSDs referring
to the corresponding step numbers in the UC (and with the variables between pointy brackets):

UC1+
1. A university employee asks the servant to register a student with a given name and gender
2. The servant writes down the name and gender (with a quill pen on parchment)
3. The servant assigns the next unused student number to the new student
4. The servant returns the assigned student number to the employee
5. The servant increases the next unused student number by 1 (using a slate, sponge, and crayon)

SSD for UC1+
1. User → System: RegisterStudent(<name>, <gender>)
2. System → System: write down the name and gender
3. System → System: assign the next unused student number to the new student
4. User ← System: “Assigned student number: “ <number>
5. System → System: increase the next unused student number by 1

UC2
1. A university employee asks the servant to remove a student with a given number
2. The servant strikes out the student info (with an extra thick quill pen on that parchment), if known
3. The servant tells the employee that he did it (or that the student number was unknown)

SSD for UC2
1. User → System: RemoveStudent(<number>)
2. System → System: strike out the student info if the student (number) was known
3. User ← System: “Done” or “Unknown student number”

UC3+
1. A university employee asks the servant for the student info of a student with a given name
2. The servant searches for all students with that name (several students may have the same name)
3. The servant returns the student info of all students with that name to the employee

SSD for UC3+
1. User → System: RetrieveNumberStudent(<name>)
2. System → System: search for all students with that name
3. User ← System: <student info of all students with that name>

UC4
1. A student personally asks the servant to register the new name, showing her/his student number
2. The servant changes her the old name into the new name (after checking a (marriage) certificate)
3. The servant tells the student that he did it (or that the student number was unknown)

SSD for UC4
1. User → System: ChangeNameFemaleStudent(<number>, <new name>)
2. System → System: change the old name into the new name if the student number was known
3. User ← System: “Done” or “Unknown number”

17

Appendix B: Our sample information machine

Our latest sample information machine

We consecutively specify the states, the inputs, the outputs, the output function and the transition
function for our latest sample information machine:

Each state consists of 2 components: a table of students (with their name, student number, and
gender) and a number, namely the next unused student number.

Schematically, the possible inputs and (corresponding) outputs are (variables between brackets):

Input Output

RegisterStudent(<name>, <gender>) “Assigned student number: “ <number>
RetrieveStudent(<name>) <student info of all students with that name>
ChangeNameStudent(<number>, <new name>) “Done” or “Unknown number”
RemoveStudent(<number>) “Done” or “Unknown student number”

The output function in a schema (sometimes distinguishing two situations):

State Input Output Condition
s RegisterStudent(x, y) “Assigned student number: “ s(NN)
s RetrieveStudent(x) { t ϵ s(ST) | t(Name) = x }
s ChangeNameStudent(n, x) “Done” if n s(ST) ∏ Number
 “Unknown number” if n s(ST) ∏ Number
s RemoveStudent(n) “Done” if n s(ST) ∏ Number
 “Unknown student number” if n s(ST) ∏ Number

where s(NN) denotes the next unused student number in state s, s(ST) the student table in state s,

and s(ST) ∏ Number the set of all values in the Number column of the table s(ST).

The transition function in a schema (where we must specify both components of the next state):

State Input Next state
Next unused
student number

Next state
Table

s RegisterStudent(x, y) s(NN) + 1 s(ST) { [x; s(NN); y] }
s RetrieveStudent(x) s(NN) s(ST)
s ChangeNameStudent(n, x) s(NN) { t | t ϵ s(ST) and t(Number) ≠ n }

{ [x; n; t(Gender)] | t ϵ s(ST) and t(Number) = n }
s RemoveStudent(n) s(NN) { t ϵ s(ST) | t(Number) ≠ n }

where in these cases [a; b; c] denotes the row with student name a, number b, and gender c.

18

Appendix C: An SQL-realization of our sample information machine

An SQL-realization of our sample information machine

We will now describe a realization of our sample IM by means of an ‘SQL servant’ (i.e., a computer
with SQL software). The realization follows directly from the description given in Appendix B.
 We start with a realization of our state space (along the lines of Chapter 9 of [21]). Below we first
introduce the so-called database name StudentRegistration. We consider StudentRegistration as a
variable that has our state space as its set of possible values. StudentRegistration has 2 components:
(1) a table ST, with attributes Name, Number, and Gender, and (2) an integer variable NN.

Our sample IM up to now preserves the property that each student number in the student table
is unique (property P2 in Example 5), thanks to the limited set of applications (possible inputs).
Something similar holds for the property that the Gender value is always in the set {‘M’, ‘F’}.
However, we want the system to guard these intended constraints independent of the set of
applications, because any new application might spoil these properties. Therefore, we explicitly
require those constraints in our SQL declaration below. First, we explicitly give the set {‘M’, ‘F’} a
name by creating a domain (i.e., data type) called GenSet. Then we require that the Gender-values
must come from this set. Moreover, we require the attribute Number to be unique. (The details of
the SQL syntax might vary among different ‘SQL servants’, so locally you might need a slightly
different syntax. We note that the CREATE VARIABLE syntax below is a kind of ‘pseudo-SQL’.)
 At the end of each line we indicate the origin of that ingredient (almost always a user story). This
also makes clear which ingredient came in in which development round.

 CREATE DATABASE StudentRegistration /* original wish to have a student registration system

 CREATE DOMAIN Genset AS CHAR(1) /* US1+
 CHECK (@VALUE IN (‘M’,’F’)) /* US1+

 CREATE TABLE ST /* US1
 (Name VARCHAR NOT NULL, /* US1
 Number INTEGER NOT NULL, /* US1
 Gender GenSet NOT NULL, /* US1+

 UNIQUE(Number)) /* Appendix C

 CREATE VARIABLE NN AS INTEGER /* US1

As noted in Section 3 we can combine the output function and the transition function into 1 function:

F: I → (S → S x O): each input leads to a function assigning to an ‘old’ state a new state and an output

We can implement that function incrementally, using 4 (stored) procedures, one for each of the
(final) USs we subsequently introduced. Each procedure has 1 or 2 input parameters and usually also
an explicit output parameter. (Parameter names are preceded by an “@”.)
 In front of each CREATE PROCEDURE we indicate the origin of that procedure (i.e. a user story).
This makes clear which ingredient came in in which development round. It clearly shows the
modularity of the resulting system we developed in this way.

The correspondence between the CRUD verbs, the verbs we used, and the SQL statements is:

CRUD
name

Name we used
in our examples

SQL

Create Register INSERT

Read Retrieve SELECT

Update Change UPDATE

Delete Remove DELETE

19

/* US1+ */ CREATE PROCEDURE RegisterStudent @name VARCHAR, @gender GenSet,
 @output VARCHAR OUTPUT AS
 BEGIN INSERT INTO ST (Name, Number, Gender) VALUES (@name, NN, @gender);
 SELECT @output = “Assigned student number: “ + NN;
 UPDATE NN SET NN = NN + 1
 END

/* US2 */ CREATE PROCEDURE RemoveStudent @number INTEGER,
 @output VARCHAR OUTPUT AS
 IF @number IN (SELECT NR FROM ST)
 THEN DELETE FROM ST t WHERE t.Number = @number;
 SELECT @output = “Done”
 ELSE SELECT @output = “Unknown student number”

/* US3+ */ CREATE PROCEDURE RetrieveStudent @name VARCHAR AS
 SELECT Number * FROM ST t WHERE t.Name = @name

/* US4 */ CREATE PROCEDURE ChangeNameStudent @number INTEGER, @new_n VARCHAR,
 @output VARCHAR OUTPUT AS
 IF @number IN (SELECT Number FROM ST)
 THEN UPDATE ST t SET t.Name = @new_n WHERE t.Number = @number;
 SELECT @output = “Done”
 ELSE SELECT @output = “Unknown number”

Declarations of interest: none. This research did not receive any specific grant from funding agencies

in the public, commercial, or not-for-profit sectors.

1

List of research reports

14001-OPERA: Germs, R. and N.D. van Foreest, Optimal control of production-inventory
systems with constant and compound poisson demand

14002-EEF: Bao, T. and J. Duffy, Adaptive vs. eductive learning: Theory and evidence

14003-OPERA: Syntetos, A.A. and R.H. Teunter, On the calculation of safety stocks

14004-EEF: Bouwmeester, M.C., J. Oosterhaven and J.M. Rueda-Cantuche, Measuring
the EU value added embodied in EU foreign exports by consolidating 27 national supply
and use tables for 2000-2007

14005-OPERA: Prak, D.R.J., R.H. Teunter and J. Riezebos, Periodic review and
continuous ordering

14006-EEF: Reijnders, L.S.M., The college gender gap reversal: Insights from a life-cycle
perspective

14007-EEF: Reijnders, L.S.M., Child care subsidies with endogenous education and
fertility

14008-EEF: Otter, P.W., J.P.A.M. Jacobs and A.H.J. den Reijer, A criterion for the number
of factors in a data-rich environment

14009-EEF: Mierau, J.O. and E. Suari Andreu, Fiscal rules and government size in the
European Union

14010-EEF: Dijkstra, P.T., M.A. Haan and M. Mulder, Industry structure and collusion
with uniform yardstick competition: theory and experiments

14011-EEF: Huizingh, E. and M. Mulder, Effectiveness of regulatory interventions on firm
behavior: a randomized field experiment with e-commerce firms

14012-GEM: Bressand, A., Proving the old spell wrong: New African hydrocarbon
producers and the ‘resource curse’

14013-EEF: Dijkstra P.T., Price leadership and unequal market sharing: Collusion in
experimental markets

14014-EEF: Angelini, V., M. Bertoni, and L. Corazzini, Unpacking the determinants of life
satisfaction: A survey experiment

14015-EEF: Heijdra, B.J., J.O. Mierau, and T. Trimborn, Stimulating annuity markets

14016-GEM: Bezemer, D., M. Grydaki, and L. Zhang, Is financial development bad for
growth?

14017-EEF: De Cao, E. and C. Lutz, Sensitive survey questions: measuring attitudes
regarding female circumcision through a list experiment

14018-EEF: De Cao, E., The height production function from birth to maturity

2

14019-EEF: Allers, M.A. and J.B. Geertsema, The effects of local government
amalgamation on public spending and service levels. Evidence from 15 years of municipal
boundary reform

14020-EEF: Kuper, G.H. and J.H. Veurink, Central bank independence and political
pressure in the Greenspan era

14021-GEM: Samarina, A. and D. Bezemer, Do Capital Flows Change Domestic Credit
Allocation?

14022-EEF: Soetevent, A.R. and L. Zhou, Loss Modification Incentives for Insurers Under
ExpectedUtility and Loss Aversion
14023-EEF: Allers, M.A. and W. Vermeulen, Fiscal Equalization, Capitalization and the
Flypaper Effect.

14024-GEM: Hoorn, A.A.J. van, Trust, Workplace Organization, and Comparative
Economic Development.

14025-GEM: Bezemer, D., and L. Zhang, From Boom to Bust in de Credit Cycle: The Role
of Mortgage Credit.

14026-GEM: Zhang, L., and D. Bezemer, How the Credit Cycle Affects Growth: The Role
of Bank Balance Sheets.

14027-EEF: Bružikas, T., and A.R. Soetevent, Detailed Data and Changes in Market
Structure: The Move to Unmanned Gasoline Service Stations.

14028-EEF: Bouwmeester, M.C., and B. Scholtens, Cross-border Spillovers from
European Gas Infrastructure Investments.

14029-EEF: Lestano, and G.H. Kuper, Correlation Dynamics in East Asian Financial
Markets.

14030-GEM: Bezemer, D.J., and M. Grydaki, Nonfinancial Sectors Debt and the U.S.
Great Moderation.

14031-EEF: Hermes, N., and R. Lensink, Financial Liberalization and Capital Flight:
Evidence from the African Continent.

14032-OPERA: Blok, C. de, A. Seepma, I. Roukema, D.P. van Donk, B. Keulen, and R.
Otte, Digitalisering in Strafrechtketens: Ervaringen in Denemarken, Engeland, Oostenrijk
en Estland vanuit een Supply Chain Perspectief.

14033-OPERA: Olde Keizer, M.C.A., and R.H. Teunter, Opportunistic condition-based
maintenance and aperiodic inspections for a two-unit series system.

14034-EEF: Kuper, G.H., G. Sierksma, and F.C.R. Spieksma, Using Tennis Rankings to
Predict Performance in Upcoming Tournaments

15001-EEF: Bao, T., X. Tian, X. Yu, Dictator Game with Indivisibility of Money

3

15002-GEM: Chen, Q., E. Dietzenbacher, and B. Los, The Effects of Ageing and
Urbanization on China’s Future Population and Labor Force

15003-EEF: Allers, M., B. van Ommeren, and B. Geertsema, Does intermunicipal
cooperation create inefficiency? A comparison of interest rates paid by intermunicipal
organizations, amalgamated municipalities and not recently amalgamated municipalities

15004-EEF: Dijkstra, P.T., M.A. Haan, and M. Mulder, Design of Yardstick Competition
and Consumer Prices: Experimental Evidence

15005-EEF: Dijkstra, P.T., Price Leadership and Unequal Market Sharing: Collusion in
Experimental Markets

15006-EEF: Anufriev, M., T. Bao, A. Sutin, and J. Tuinstra, Fee Structure, Return Chasing
and Mutual Fund Choice: An Experiment

15007-EEF: Lamers, M., Depositor Discipline and Bank Failures in Local Markets During
the Financial Crisis

15008-EEF: Oosterhaven, J., On de Doubtful Usability of the Inoperability IO Model

15009-GEM: Zhang, L. and D. Bezemer, A Global House of Debt Effect? Mortgages and
Post-Crisis Recessions in Fifty Economies

15010-I&O: Hooghiemstra, R., N. Hermes, L. Oxelheim, and T. Randøy, The Impact of
Board Internationalization on Earnings Management

15011-EEF: Haan, M.A., and W.H. Siekman, Winning Back the Unfaithful while Exploiting
the Loyal: Retention Offers and Heterogeneous Switching Costs

15012-EEF: Haan, M.A., J.L. Moraga-González, and V. Petrikaite, Price and Match-Value
Advertising with Directed Consumer Search

15013-EEF: Wiese, R., and S. Eriksen, Do Healthcare Financing Privatisations Curb Total
Healthcare Expenditures? Evidence from OECD Countries

15014-EEF: Siekman, W.H., Directed Consumer Search

15015-GEM: Hoorn, A.A.J. van, Organizational Culture in the Financial Sector: Evidence
from a Cross-Industry Analysis of Employee Personal Values and Career Success

15016-EEF: Te Bao, and C. Hommes, When Speculators Meet Constructors: Positive and
Negative Feedback in Experimental Housing Markets

15017-EEF: Te Bao, and Xiaohua Yu, Memory and Discounting: Theory and Evidence

15018-EEF: Suari-Andreu, E., The Effect of House Price Changes on Household Saving
Behaviour: A Theoretical and Empirical Study of the Dutch Case

15019-EEF: Bijlsma, M., J. Boone, and G. Zwart, Community Rating in Health Insurance:
Trade-off between Coverage and Selection

4

15020-EEF: Mulder, M., and B. Scholtens, A Plant-level Analysis of the Spill-over Effects
of the German Energiewende

15021-GEM: Samarina, A., L. Zhang, and D. Bezemer, Mortgages and Credit Cycle
Divergence in Eurozone Economies

16001-GEM: Hoorn, A. van, How Are Migrant Employees Manages? An Integrated
Analysis

16002-EEF: Soetevent, A.R., Te Bao, A.L. Schippers, A Commercial Gift for Charity

16003-GEM: Bouwmeerster, M.C., and J. Oosterhaven, Economic Impacts of Natural Gas
Flow Disruptions

16004-MARK: Holtrop, N., J.E. Wieringa, M.J. Gijsenberg, and P. Stern, Competitive
Reactions to Personal Selling: The Difference between Strategic and Tactical Actions

16005-EEF: Plantinga, A. and B. Scholtens, The Financial Impact of Divestment from
Fossil Fuels

16006-GEM: Hoorn, A. van, Trust and Signals in Workplace Organization: Evidence from
Job Autonomy Differentials between Immigrant Groups

16007-EEF: Willems, B. and G. Zwart, Regulatory Holidays and Optimal Network
Expansion

16008-GEF: Hoorn, A. van, Reliability and Validity of the Happiness Approach to
Measuring Preferences

16009-EEF: Hinloopen, J., and A.R. Soetevent, (Non-)Insurance Markets, Loss Size
Manipulation and Competition: Experimental Evidence

16010-EEF: Bekker, P.A., A Generalized Dynamic Arbitrage Free Yield Model

16011-EEF: Mierau, J.A., and M. Mink, A Descriptive Model of Banking and Aggregate
Demand

16012-EEF: Mulder, M. and B. Willems, Competition in Retail Electricity Markets: An
Assessment of Ten Year Dutch Experience

16013-GEM: Rozite, K., D.J. Bezemer, and J.P.A.M. Jacobs, Towards a Financial Cycle for
the US, 1873-2014

16014-EEF: Neuteleers, S., M. Mulder, and F. Hindriks, Assessing Fairness of Dynamic
Grid Tariffs

16015-EEF: Soetevent, A.R., and T. Bružikas, Risk and Loss Aversion, Price Uncertainty
and the Implications for Consumer Search

16016-HRM&OB: Meer, P.H. van der, and R. Wielers, Happiness, Unemployment and
Self-esteem

5

16017-EEF: Mulder, M., and M. Pangan, Influence of Environmental Policy and Market
Forces on Coal-fired Power Plants: Evidence on the Dutch Market over 2006-2014

16018-EEF: Zeng,Y., and M. Mulder, Exploring Interaction Effects of Climate Policies: A
Model Analysis of the Power Market

16019-EEF: Ma, Yiqun, Demand Response Potential of Electricity End-users Facing Real
Time Pricing

16020-GEM: Bezemer, D., and A. Samarina, Debt Shift, Financial Development and
Income Inequality in Europe

16021-EEF: Elkhuizen, L, N. Hermes, and J. Jacobs, Financial Development, Financial
Liberalization and Social Capital

16022-GEM: Gerritse, M., Does Trade Cause Institutional Change? Evidence from
Countries South of the Suez Canal

16023-EEF: Rook, M., and M. Mulder, Implicit Premiums in Renewable-Energy Support
Schemes

17001-EEF: Trinks, A., B. Scholtens, M. Mulder, and L. Dam, Divesting Fossil Fuels: The
Implications for Investment Portfolios

17002-EEF: Angelini, V., and J.O. Mierau, Late-life Health Effects of Teenage Motherhood

17003-EEF: Jong-A-Pin, R., M. Laméris, and H. Garretsen, Political Preferences of
(Un)happy Voters: Evidence Based on New Ideological Measures

17004-EEF: Jiang, X., N. Hermes, and A. Meesters, Financial Liberalization, the
Institutional Environment and Bank Efficiency

17005-EEF: Kwaak, C. van der, Financial Fragility and Unconventional Central Bank
Lending Operations

17006-EEF: Postelnicu, L. and N. Hermes, The Economic Value of Social Capital

17007-EEF: Ommeren, B.J.F. van, M.A. Allers, and M.H. Vellekoop, Choosing the Optimal
Moment to Arrange a Loan

17008-EEF: Bekker, P.A., and K.E. Bouwman, A Unified Approach to Dynamic Mean-
Variance Analysis in Discrete and Continuous Time

17009-EEF: Bekker, P.A., Interpretable Parsimonious Arbitrage-free Modeling of the Yield
Curve

17010-GEM: Schasfoort, J., A. Godin, D. Bezemer, A. Caiani, and S. Kinsella, Monetary
Policy Transmission in a Macroeconomic Agent-Based Model

17011-I&O: Bogt, H. ter, Accountability, Transparency and Control of Outsourced Public
Sector Activities

6

17012-GEM: Bezemer, D., A. Samarina, and L. Zhang, The Shift in Bank Credit
Allocation: New Data and New Findings

17013-EEF: Boer, W.I.J. de, R.H. Koning, and J.O. Mierau, Ex-ante and Ex-post
Willingness-to-pay for Hosting a Major Cycling Event

17014-OPERA: Laan, N. van der, W. Romeijnders, and M.H. van der Vlerk, Higher-order
Total Variation Bounds for Expectations of Periodic Functions and Simple Integer
Recourse Approximations

17015-GEM: Oosterhaven, J., Key Sector Analysis: A Note on the Other Side of the Coin

17016-EEF: Romensen, G.J., A.R. Soetevent: Tailored Feedback and Worker Green
Behavior: Field Evidence from Bus Drivers

17017-EEF: Trinks, A., G. Ibikunle, M. Mulder, and B. Scholtens, Greenhouse Gas
Emissions Intensity and the Cost of Capital

17018-GEM: Qian, X. and A. Steiner, The Reinforcement Effect of International Reserves
for Financial Stability

17019-GEM/EEF: Klasing, M.J. and P. Milionis, The International Epidemiological
Transition and the Education Gender Gap

2018001-EEF: Keller, J.T., G.H. Kuper, and M. Mulder, Mergers of Gas Markets Areas and
Competition amongst Transmission System Operators: Evidence on Booking Behaviour in
the German Markets

2018002-EEF: Soetevent, A.R. and S. Adikyan, The Impact of Short-Term Goals on Long-
Term Objectives: Evidence from Running Data

2018003-MARK: Gijsenberg, M.J. and P.C. Verhoef, Moving Forward: The Role of
Marketing in Fostering Public Transport Usage

2018004-MARK: Gijsenberg, M.J. and V.R. Nijs, Advertising Timing: In-Phase or Out-of-
Phase with Competitors?

2018005-EEF: Hulshof, D., C. Jepma, and M. Mulder, Performance of Markets for
European Renewable Energy Certificates

2018006-EEF: Fosgaard, T.R., and A.R. Soetevent, Promises Undone: How Committed
Pledges Impact Donations to Charity

2018007-EEF: Durán, N. and J.P. Elhorst, A Spatio-temporal-similarity and Common
Factor Approach of Individual Housing Prices: The Impact of Many Small Earthquakes in
the North of Netherlands

2018008-EEF: Hermes, N., and M. Hudon, Determinants of the Performance of
Microfinance Institutions: A Systematic Review

2018009-EEF: Katz, M., and C. van der Kwaak, The Macroeconomic Effectiveness of Bank
Bail-ins

7

2018010-OPERA: Prak, D., R.H. Teunter, M.Z. Babai, A.A. Syntetos, and J.E. Boylan,
Forecasting and Inventory Control with Compound Poisson Demand Using Periodic
Demand Data

2018011-EEF: Brock, B. de, Converting a Non-trivial Use Case into an SSD: An Exercise

2018012-EEF: Harvey, L.A., J.O. Mierau, and J. Rockey, Inequality in an Equal Society

2018013-OPERA: Romeijnders, W., and N. van der Laan, Inexact cutting planes for two-
stage mixed-integer stochastic programs

2018014-EEF: Green, C.P., and S. Homroy, Bringing Connections Onboard: The Value of
Political Influence

2018015-OPERA: Laan, N. van der, and W. Romeijnders, Generalized aplha-
approximations for two-stage mixed-integer recourse models

2018016-GEM: Rozite, K., Financial and Real Integration between Mexico and the United
States

2019001-EEF: Lugalla, I.M., J. Jacobs, and W. Westerman, Drivers of Women
Entrepreneurs in Tourism in Tanzania: Capital, Goal Setting and Business Growth

2019002-EEF: Brock, E.O. de, On Incremental and Agile Development of (Information)
Systems

8

	On Incremental and Agile Development of (Information) Systems
	List of research reports

