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Inexact cutting planes for two-stage mixed-integer
stochastic programs

Ward Romeijnders, Niels van der Laan
Department of Operations, University of Groningen, P.O. Box 800, 9700 AV, Groningen, The Netherlands,

w.romeijnders@rug.nl, n.van.der.laan@rug.nl

We propose a novel way of applying cutting plane techniques to two-stage mixed-integer stochastic programs.

Instead of using cutting planes that are always valid, our idea is to apply inexact cutting planes to the

second-stage feasible regions that may cut away feasible integer second-stage solutions for some scenarios

and may be overly conservative for others. The advantage is that it allows us to use cutting planes that are

affine in the first-stage decision variables, so that the approximation is convex, and can be solved efficiently

using techniques from convex optimization. We derive performance guarantees for using particular types of

inexact cutting planes for simple integer recourse models. Moreover, we show in general that using inexact

cutting planes leads to good first-stage solutions if the total variations of the probability density functions

of the random variables in the model are small enough.

Key words : stochastic programming, integer programming, cutting plane techniques, convex

approximations

1. Introduction

Many practical problems under uncertainty in, e.g., energy, finance, logistics, and healthcare involve

integer decision variables. Such problems can be modelled as mixed-integer stochastic programs

(MISPs), but are notoriously difficult to solve. In this paper, we do not attempt to solve these

problems exactly. Instead, we introduce a novel approach to approximately solve two-stage MISPs,

and we derive performance guarantees for the resulting approximating solutions.

Traditional solution methods for MISPs combine solution approaches for continuous stochastic

programs and deterministic mixed-integer programs (MIPs). See, e.g., Ahmed et al. [1] for branch-

and-bound, Sen and Higle [18] and Ntaimo [13] for disjunctive decomposition, Carøe and Schultz

[5] for dual decomposition, Laporte and Louveaux [11] for the integer L-shaped method, and Zhang

and Küçükyavuz [23] for cutting plane techniques. All these solution methods aim at finding the

exact optimal solution for MISPs, but generally have difficulties scaling up to solve large problem

instances. This is not surprising, since contrary to their continuous counterparts, these MISPs are

non-convex in general [14]. This means that efficient techniques from convex optimization cannot

be used to solve these problems.
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Based on this observation and inspired by the success of cutting plane techniques for deterministic

MIPs, we propose to use cutting planes to solve two-stage MISPs. However, we will use them in a

fundamentally different way than in existing methods for both deterministic and stochastic MIPs.

Instead of using exact cutting planes that are always valid, we propose to use inexact cutting

planes for the second-stage feasible regions in such a way that the approximating problem remains

convex in the first-stage decision variables, and thus efficient convex optimization techniques can

be used to solve the approximation.

The disadvantage of using inexact cutting planes is that they may cut away part of the second-

stage feasible region or that they may be overly conservative, so that we significantly over- or

underestimate the second-stage costs, respectively. However, for MISPs this may be justified since

our aim is not to find the exact and complete characterization of the integer hulls of the second-

stage feasible regions, but rather to obtain good first-stage decisions. In fact, one of our main

contributions is that we show that it is possible to find good or even near-optimal first-stage

decisions despite the fact that the integer hulls of the second-stage feasible regions are inexactly

approximated.

For simple integer recourse (SIR) models, a special type of MISP, our inexact cutting plane

approximation turns out to be equivalent to convex α-approximations, derived by Klein Haneveld

et al. [10] from a completely different perspective. By reinterpreting these α-approximations using

inexact cutting planes, we connect two existing solution methodologies for MISPs that use convex

approximations and exact cutting planes, respectively. Moreover, this reinterpretation allows us to

apply existing performance guarantees derived in Romeijnders et al. [16] for α-approximations to

inexact cutting plane techniques for SIR models. Furthermore, we use results from Romeijnders

et al. [15] to derive conditions for general MISPs under which inexact cutting plane techniques

are asymptotically accurate. Intuitively, this means that using inexact cutting planes yields good

approximations if the variability of the random parameters in the model is large enough. We derive

inexact mixed-integer Gomory cuts for general two-stage MISPs and inexact cutting planes for a

nurse scheduling problem that are asymptotically accurate.

Summarizing, the main contributions of our paper are as follows.

• We propose a novel solution approach for two-stage MISPs by applying inexact cutting planes

to second-stage feasible regions.

• We reinterpret α-approximations for SIR models as inexact cutting plane approximations,

connecting two existing solution methodologies for MISPs, and yielding a tight error bound for

applying inexact cutting planes to SIR models.

• We derive a performance guarantee for applying inexact cutting planes to MISPs in general,

proving that inexact cutting plane techniques are asymptotically accurate.
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• We derive inexact mixed-integer Gomory cuts for general MISPs and derive inexact cutting

planes for a nurse scheduling problem.

The remainder of this paper is organized as follows. In Section 2 we define MISPs and explain

our inexact cutting plane approach. In Section 3, we reintrepret α-approximations for SIR models

using inexact cutting planes, and in Section 4 we prove for MISPs in general that inexact cutting

plane techniques are asymptotically accurate. In Section 5, we derive inexact mixed-integer Gomory

cuts, and apply inexact cutting planes to a nurse scheduling problem. We end with a discussion in

Section 6.

2. Problem definition and solution approach

2.1. Problem definition

Two-stage MISPs can be interpreted as hierarchical planning problems. In the first stage, deci-

sions x have to be made before some random parameters ω are known, whereas in the second

stage, decisions y are made after the realizations of these random parameters ω are revealed. We

assume that the probability distribution of ω is known, with F denoting the cumulative distribution

function and Ω the support of ω. The MISPs that we consider are defined as

min
x,z

{
c>x+Q(z) : Ax= b, z = Tx, x∈X

}
, (1)

where z = Tx∈Rm represent tender variables. Moreover, the expected value function Q represents

the expected second-stage costs

Q(z) :=Eω[v(ω, z)], z ∈Rm, (2)

where the second-stage value function v is defined as

v(ω, z) := min
y

{
q>y : Wy= ω− z, y ∈ Y

}
, ω ∈Ω, z ∈Rm. (3)

The second-stage decisions y are also called recourse actions. Indeed, if Tx = ω represents ran-

dom goal constraints, then the second-stage optimization problem v models all possible recourse

actions y, and their corresponding costs, to compensate for infeasibilities of these goal constraints.

Observe that we only consider randomness in the right-hand side of these goal constraints. More-

over, we assume that at least some of the second-stage decision variables yi are restricted to be

integer. This is captured by the feasible regions X ⊂Rn1+ and Y ⊂Rn2+ that may impose integrality

restrictions on the first- and second-stage decision variables, respectively.

Throughout this paper we make the following assumptions. The first is often referred to as

the complete recourse assumption, meaning that there always exists a feasible recourse action y,
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ensuring that v(ω, z)<+∞ for all ω ∈Ω and z ∈Rm. The second is equivalent to the dual feasible

region of the LP-relaxation of v being non-empty, implying that v(ω, z)>−∞ for all ω ∈ Ω and

z ∈ Rm. Together with the third assumption, these assumptions guarantee that Q(z) is finite for

every z ∈Rm.

Assumption 1. We assume that

• there exists y ∈ Y such that Wy= ω− z for every ω ∈Ω and z ∈Rm,

• there exists λ∈Rm such that W>λ≤ q, and

• Eω[|ωi|]<+∞, for all i= 1, . . . ,m.

2.2. Novel solution approach: inexact cutting planes

To solve the MISP defined in (1), we propose to relax the integrality restrictions on the second-stage

decision variables y and to add inexact cutting planes to the second-stage feasible region

Y (ω, z) :=
{
y ∈ Y : Wy= ω− z

}
.

In particular, we assume that the cutting planes are of the form Ŵ (ω)y ≥ ĥ(ω)− T̂ (ω)z, so that

they are affine in the tender variables z.

Definition 1. Consider the second-stage value function v defined in (3). Then, we call v̂ an inexact

cutting plane approximation of v if it is of the form

v̂(ω, z) = min
y
{q>y : Wy= ω− z, Ŵ (ω)y≥ ĥ(ω)− T̂ (ω)z, y ∈Rn2+ }, ω ∈Ω, z ∈Rm.

Moreover, we define the inexact cutting plane approximation Q̂ of the expected value function Q,

defined in (2), as Q̂(z) :=Eω[v̂(ω, z)], z ∈Rm.

The main reason we use inexact cutting planes that are affine in z is that the approximating value

function v̂(ω, z) with feasible region

Ŷ (ω, z) :=

{
y ∈Rn2+ :

Wy= ω− z

Ŵ (ω)y≥ ĥ(ω)− T̂ (ω)z

}

is convex in z for every fixed ω ∈ Ω, and thus the corresponding approximating expected value

function Q̂ is convex. This means that the MISP in (1) with Q replaced by Q̂ can be solved

efficiently using techniques from convex optimization.

Lemma 1. Consider the inexact cutting plane approximations v̂ and Q̂ of Definition 1. Then, Q̂

is convex, and v̂(ω, z) is convex in z for every fixed ω ∈Ω. �
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In Section 5 we derive inexact mixed-integer Gomory cuts and inexact cutting planes for a nurse

scheduling problem. However, the main focus of this paper is not on how to obtain the inexact

cutting plane approximation from Definition 1. Instead, we assume that the inexact cutting planes

are given or can be iteratively generated by an algorithm, and we consider the performance of

using such cutting planes.

The performance of these inexact cutting planes may be surprisingly good, even if they cut

away feasible integer second-stage solutions or admit second-stage solutions outside the integer

hull Ȳ (ω, z) of the second-stage feasible region Y (ω, z); in these cases, v̂(ω, z) may significantly

over- or underestimate v(ω, z), respectively. However, to obtain good first-stage decisions x, we do

not require v̂(ω, z) to be a good approximation of v(ω, z) for every ω ∈Ω and z ∈Rm, but merely

require v̂(ω, z) to be a good approximation of v(ω, z) on average for every z ∈ Rm. This explains

why applying inexact cutting planes may work for stochastic MIPs but not for deterministic MIPs.

Using a one-dimensional example, we illustrate the type of inexact cutting planes that we have

in mind.

Example 1. Consider a special case of the second-stage value function defined in (3), given by

v(ω, z) = min
y,u1,u2

qy+ ru1 + ru2

s.t. y−u1 +u2 = ω− z (4)

y ∈Z+, u1, u2 ∈R+,

where 0 < q < r. By rewriting the equality in (4) as u2 = ω − z − y + u1, we can eliminate the

variable u2 from the second-stage value function to obtain

v(ω, z) = r(ω− z) + min
y,u1

(q− r)y+ 2ru1 (5)

s.t. y−u1 ≤ ω− z

y ∈Z+, u1 ∈R+.

Since the minimization problem in (5) only has two decision variables, y and u1, we can graphically

depict its feasible region Y (ω, z). The left panel in Figure 1 shows this feasible region for ω = 2.5

and z = 1, and also depicts the feasible region of the LP-relaxation of v(ω, z). Clearly, the latter is

larger than the integer hull Ȳ (ω, z) of Y (ω, z).

It is well known that the integer hull Ȳ (ω, z) can be obtained by adding a mixed-integer rounding

(MIR) inequality, so that for every ω ∈Ω and z ∈R, the integer hull Ȳ (ω, z) equals

Ȳ (ω, z) :=
{

(y,u1)∈R2
+ : y−u1 ≤ ω− z, y−

1

1− (ω− z) + bω− zc
u1 ≤ bω− zc

}
.
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u1

y y−u1 ≤ ω− z

ω− z

u1

y y−u1 ≤ ω− z

ω− z

bωc− z

y− (1−ω+ bωc)−1u1 ≤ bωc− z

Figure 1 Illustration of the feasible region of v(ω, z) of Example 1 with ω = 2.5 and z = 1. The feasible region

Y (ω, z) is represented by the black dots and the thick black lines. In the left panel the shaded region

corresponds to the feasible region of the LP-relaxation of v, whereas in the right panel, the MIR

inequality is added, and the dark shaded region represents the integer hull Ȳ (ω, z) of the feasible region

Y (ω, z) of v(ω, z).

The right panel in Figure 1 shows Ȳ (ω, z) and this MIR inequality.

Observe that the MIR inequality is not affine in z, which means that it will be hard to use for

optimization purposes. However, if z ∈Z, then it reduces to

y− 1

1−ω+ bωc
u1 ≤ bωc− z, (6)

which means it is of the form of the inexact cutting planes in Definition 1. Thus, a natural idea is

to use the cutting planes in (6), also when z /∈ Z. For z ∈ Z they will be exact for all ω ∈ Ω, and

for z /∈Z they will be inexact. Figure 2 shows the approximating feasible region

Ŷ (ω, z) =
{

(y,u1)∈R2
+ : y−u1 ≤ ω− z, y−

1

1−ω+ bωc
u1 ≤ bωc− z

}
,

for z = 0.5 and ω= 1.5,1.75,2,2.25. We observe that for ω= 2, the approximating MIR inequality

coincides with the constraint y − u≤ ω − z, so that Ŷ (ω, z) is equal to the feasible region of the

LP-relaxation of v(ω, z), and thus admits solutions outside the integer hull Ȳ (ω, z). For ω = 1.5,

on the other hand, the approximating MIR inequality cuts away feasible integer solutions. For

ω= 1.75 and ω= 2.25 we see a combination of both.

In Section 5.2 we will numerically assess the performance of the inexact cutting plane approxi-

mation

v̂(ω, z) := r(ω− z) + min
y,u1

{
(q− r)y+ 2ru1 : (y,u1)∈ Ŷ (ω, z)

}
, ω ∈Ω, z ∈R, (7)

and show that for a normally distributed random variable ω∼N(µ,σ2), Q̂ is a good approximation

of Q for medium to large values of the standard deviation σ.
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u1

y y−u1 ≤ ω− z

ω− z

bωc− z

ω= 1.5, z = 0.5
u1

y y−u1 ≤ ω− z

ω− z

bωc− z

ω= 1.75, z = 0.5

u1

y y−u1 ≤ ω− z

ω− z

ω= 2, z = 0.5
u1

y y−u1 ≤ ω− z

ω− z
bωc− z

ω= 2.25, z = 0.5

Figure 2 Illustration of the feasible region of v(ω, z) of Example 1 with z = 0.5 and ω = 1.5,1.75,2, and 2.25.

The feasible region Y (ω, z) is represented by the black dots and the thick black lines. The dotted line

represents the inexact MIR inequality defined in (6), and the shaded regions the approximating feasible

region Ŷ (ω, z).

3. Inexact cutting planes for simple integer recourse models

In this section we show that existing convex approximations for simple integer recourse (SIR)

models can be interpreted as inexact cutting plane approximations. SIR models are introduced by

Louveaux and Van der Vlerk [12], and can be considered the most simple version of a MISP as

defined in (1). For ease of exposition, we consider here the one-sided and one-dimensional version

of SIR, where the second-stage value function v is defined as

v(ω, z) = min
y

{
qy : y≥ ω− z, y ∈Z+

}
, ω ∈Ω, z ∈R.

Observe that we can derive a closed-form expression for v since for every ω ∈ Ω and z ∈ R, the

optimal solution is y∗ = dω− ze+ := max{0, dω− ze}, and thus v(ω, z) = q dω− ze+. Clearly, v(ω, z)

is a non-convex function of z because of the round-up operator.
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We, however, focus on the feasible region Y (ω, z) = {y ∈Z+ : y≥ ω− z} and its integer hull

Ȳ (ω, z) =
{
y ∈R+ : y≥ dω− ze

}
, ω ∈Ω, z ∈R.

Here, the cutting plane y ≥ dω− ze makes the original constraint y ≥ ω − z redundant. Similar

to Example 1, this exact cutting plane is not affine in z and thus not suitable for optimization

purposes. However, if z ∈ Z, then the cutting plane is equivalent to y ≥ dωe − z, which we can

use as an inexact cutting plane for z /∈ Z. In fact, we define a family of inexact cutting plane

approximations v̂α, each of them using the cutting plane y ≥ dω−αe + α − z that is exact for

z ∈ α+Z.

Definition 2. For every α ∈ R, define the inexact cutting plane approximation v̂α for the SIR

second-stage value function v as

v̂α(ω, z) = min
y

{
qy : y≥ dω−αe+α− z, y ∈R+

}
= q
(
dω−αe+α− z

)+

, ω ∈Ω, z ∈R.

Moreover, define the corresponding inexact cutting plane approximation Q̂α for the SIR expected

value function Q as Q̂α(z) = qEω[(dω−αe+α− z)+], z ∈R.

Surprisingly, the inexact cutting plane approximation Q̂α equals the α-approximations of Klein

Haneveld et al. [10], derived from a completely different perspective. They first identify all prob-

ability distributions of ω for which the expected value function Q is convex. This turns out to be

all continuous distributions with probability density function f satisfying f(s) =G(s+ 1)−G(s),

s ∈ R, for some cumulative distribution function G with finite mean. For all other distributions,

they use this condition to generate an approximating density function f̂ , resulting in a convex

approximation Q̂ of Q. Selecting G(s + 1) = F (ds−αe + α), s ∈ R, yields the α-approximation

Q̂α(z) := qEω[(dω−αe+α− z)+], z ∈R, equivalent to the inexact cutting plane approximation of

Definition 1.

In this paper, we reinterpret Q̂α as an inexact cutting plane approximation, connecting the

convex approximation solution philosophy, introduced by Van der Vlerk [20] and continued by

among others [10, 15, 16, 17, 19, 21], with exact cutting plane techniques for MISPs, studied in,

e.g., [4, 7, 8, 23]. This is particularly relevant, since performance guarantees are available for using

convex approximations that may be used for inexact cutting plane approximations. In fact, for

SIR models, Romeijnders et al. [16] derive an upper bound on ‖Q− Q̂α‖∞ := supz∈R |Q(z)− Q̂α(z)|

for every α ∈ R, that depends on the total variation of the probability density function f of the

random variable ω.
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Definition 3. Let f : R→ R be a real-valued function and let I ⊂ R be an interval. Let Π(I)

denote the set of all finite ordered sets P = {x1, . . . , xN+1} with x1 < · · · < xN+1 in I. Then, the

total variation of f on I, denoted |∆|f(I), is defined as

|∆|f(I) = sup
P∈Π(I)

Vf (P ),

where Vf (P ) =
∑N

i=1 |f(xi+1)− f(xi)|. We write |∆|f := |∆|f(R).

Theorem 1. Consider the SIR expected value function Q(z) = qEω[dω− ze+], z ∈R, and its inex-

act cutting plane approximation Q̂α(z) = qEω[(dω−αe−α−z)+], z ∈R, for α∈R. Then, for every

continuous random variable ω with probability density function f , we have

‖Q− Q̂α‖∞ ≤ qh(|∆|f),

where h : [0,∞) 7→R is defined as

h(|∆|f) =

{
|∆|f/8, |∆|f ≤ 4,

1− 2/|∆|f, |∆|f ≥ 4.

Proof. See Romeijnders et al. [16]. �

For unimodal density functions, such as the normal density function in Example 2 below, it holds

that the total variation |∆|f of the probability density function f of ω decreases as the variance

of the random variable ω increases. In general, we conclude from Theorem 1 that the larger the

variability in the model the better the inexact cutting plane approximation.

Example 2. Let ω be a normal random variable with mean µ and standard deviation σ. Then,

the probability density function f of ω is given by

f(x) =
1√

2πσ2
exp

{
− (x−µ)2

2σ2

}
, x∈R,

which is unimodal with mode µ, and thus has total variation |∆|f = 2f(µ) = σ−1
√

2/π. Hence, if

the standard deviation σ increases, then the total variation |∆|f of f will decrease, and thus the

upper bound on ‖Q− Q̂α‖∞ in Theorem 1 will decrease. In other words, if the standard deviation

is large, then Q̂α is a close approximation of Q, and thus the resulting approximating first-stage

decision x̂α will be good.

4. Inexact cutting plane approximations for general MISPs

Based on Section 3 and Example 1 in Section 2, we observe that it is possible to use exact cutting

planes, that are valid for all ω ∈Ω and for z on a grid of points, as inexact cutting planes for all ω

and z. That is why we make the following assumption for inexact cutting plane approximations.
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Assumption 2. There exist α∈Rm and β ∈Zm such that for all z ∈Rm with z ∈ α+βZm and for

all ω ∈Ω,

•
{
y ∈Zp2+ ×Rn2−p2+ :Wy= ω− z

}
⊂
{
y ∈Rn2+ :Wy= ω− z, Ŵ (ω)y≥ ĥ(ω)− T̂ (ω)z

}
,

• v̂(ω, z) = v(ω, z).

Remark 1. With slight abuse of notation we will use α+βZm to represent the grid of points

α+βZm :=
{

(α1 +β1l1, . . . , αm +βmlm) : l ∈Zm
}
.

In the remainder of this section we will prove that under Assumption 2, inexact cutting plane

approximations are asymptotically accurate. That is, the error of using inexact cutting planes

vanishes as the total variations of the one-dimensional conditional pdfs of the random vector ω

in the model go to zero. For example, for normally distributed ω this means that the solutions

obtained by using inexact cutting planes are good if the variance of ω is large enough. The final

result is Theorem 2, which is conveniently stated here below. This result also holds when only

the first condition in Assumption 2 holds, but then the inexact cutting plane approximation is an

asymptotic lower bound.

Definition 4. For every i= 1, . . . ,m and t ∈ Rm, we let t−i ∈ Rm−1 denote the vector t without

its i-th component.

Definition 5. For every i= 1, . . . ,m and t−i ∈Rm−1, define the i-th conditional density function

fi(·|t−i) of the m-dimensional joint pdf f as

fi(ti|t−i) =


f(t)

f−i(t−i)
, f−i(t−i)> 0,

0, f−i(t−i) = 0,

where f−i represents the joint density function of ω−i, the random vector obtained by removing

the i-th element of ω.

Definition 6. Let Hm denote the set of all m-dimensional joint pdfs f whose conditional density

functions fi(·|t−i) are of bounded variation.

Theorem 2. Consider the mixed-integer recourse function Q and its inexact cutting plane approx-

imation Q̂. Under Assumptions 1 and 2, there exists a constant C ∈R with C > 0 such that for all

ω with pdf f ∈Hm,

‖Q− Q̂‖∞ ≤C
m∑
i=1

Eω−i

[
|∆|fi(·|ω−i)

]
.



Romeijnders and van der Laan Inexact cutting planes for two-stage mixed-integer stochastic programs 11

The proof of Theorem 2 is postponed to Section 4.4. First, however, we discuss preliminary results

required for this proof. In particular, in Section 4.1 we discuss properties of the mixed-integer value

function v(ω, z), in Section 4.2 we show that the inexact cutting plane approximation v̂(ω, z) is

affine in z on parts of its domain, and in Section 4.3 we derive bounds on v̂. The proofs of our

auxiliary lemmas and propositions in these sections are postponed to the Appendix.

4.1. Properties of mixed-integer value functions

Let B be a dual feasible basis matrix of the LP-relaxation vLP of v. Then, we can rewrite vLP as

vLP (ω, z) = min
yB ,yN

q>ByB + q>NyN

s.t. ByB +NyN = ω− z (8)

yB ∈Rm+ , yN ∈R
n2−m
+ ,

where yB denote the basic variables and yN the non-basic variables. Using the equality in (8) to

solve for the basic variables yB, we obtain the equivalent representation

vLP (ω, z) = q>BB
−1(ω− z) + min

yN
q̄>NyN (9)

s.t. B−1(ω− z)−B−1NyN ≥ 0

yN ∈Rn2−m+ ,

with reduced costs q̄>N := q>N−q>BB−1N ≥ 0. Obviously, it is optimal to select the non-basic variables

yN equal to zero in the minimization problem in (9) if B−1(ω − z)≥ 0. The latter condition can

conveniently be rewritten as ω − z ∈ Λ, where the simplicial cone Λ is defined as Λ := {t ∈ Rm :

B−1t≥ 0}. Thus, if ω− z ∈Λ, then

vLP (ω, z) = q>BB
−1(ω− z).

This result holds for every dual feasible matrix B. In fact, the basis decomposition theorem of

Walkup and Wets [22] shows that there exist basis matrices Bk and corresponding simplicial cones

Λk := {t ∈Rm :B−1
k t≥ 0}, k = 1, . . . ,K, such that these cones Λk cover Rm, the interiors of these

cones Λk are mutually disjoint, and vLP (ω, z) = q>Bk
B−1
k (ω−z) for ω−z ∈Λk for every k= 1, . . . ,K.

Romeijnders et al. [15] prove a similar result for the mixed-integer value function v, involving the

same basis matrices Bk and simplicial cones Λk, k= 1, . . . ,K. They show that there exist distances

dk ≥ 0 such that if ω− z ∈ Λk(dk), i.e., if ω− z ∈ Λk and ω− z has at least Euclidean distance dk

to the boundary of Λk, then

v(ω, z) = q>Bk
B−1
k (ω− z) +ψk(ω− z),
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where ψk is a Bk-periodic function, see Definition 7 below. The first term is the same as the

LP-relaxation vLP , and thus the second term can be interpreted as the additional costs of having

integer variables instead of continuous ones. Theorem 3 summarizes these results.

Definition 7. Let B ∈ Zm×m be an integer matrix. Then, a function ψ : Rm 7→ R is called B-

periodic if and only if ψ(z) =ψ(z+Bl) for every z ∈Rm and l ∈Zm.

Theorem 3. Consider the mixed-integer value function

v(ω, z) = min
{
q>y :Wy= ω− z, y ∈Zn2+ ×Rn3+

}
, z ∈Rm,

where W is an integer matrix, and v(ω, z) is finite for all ω ∈ Ω and z ∈ Rm by Assumption 1.

Then, there exist dual feasible basis matrices Bk of vLP , k = 1, . . . ,K, simplicial cones Λk := {t ∈

Rm :B−1
k t≥ 0}, distances dk ≥ 0, and bounded Bk-periodic functions ψk such that

•
K⋃
k=1

Λk =Rm,

• (intΛk)∩ (intΛl) = ∅ for every k, l ∈ {1, . . . ,K} with k 6= l, and

• v(ω, z) = q>Bk
B−1
k (ω− z) +ψk(ω− z) for every ω− z ∈Λk(dk).

Proof. See [15]. �

4.2. Linearity regions of inexact cutting plane approximations

Let k = 1, . . . ,K be given and consider a fixed ω ∈ Ω. Theorem 3 shows that for all z ∈ Rm with

ω− z ∈Λk(dk), i.e., for all z ∈ ω−Λk(dk), the mixed-integer value function v is given by

v(ω, z) = q>Bk
B−1
k (ω− z) +ψk(ω− z).

Since ψk is Bk-periodic there exist values of β for which ψk(ω− z) =ψk(ω−α) for all z ∈ α+βZm;

see the proof of Proposition 1. For simplicity, however, assume for the moment that β equals such a

value. Then, for all z ∈ ω−Λk(dk) and z ∈ α+βZm, we have v̂(ω, z) = v(ω, z), and thus the inexact

cutting plane approximation v̂ equals

v̂(ω, z) = q>Bk
B−1
k (ω− z) +ψk(ω−α). (10)

Thus, for a fixed ω ∈Ω, the inexact cutting plane approximation v̂(ω, z) is affine in z over a grid

of points in ω−Λk(dk). Since v̂(ω, z) is convex in z, we intuitively expect v̂(ω, z) to satisfy (10) for

points outside the grid in ω−Λk(dk) as well. Lemma 2 confirms our intuition.

Lemma 2. Let v :Rm 7→R be a convex function and let C ⊂Rm be a closed convex set with extreme

points zj ∈ C, j = 1, . . . , J , and interior point z0 ∈ C. Suppose that there exist a ∈ Rm and b ∈ R

such that v(zj) = a>zj + b for all j = 0, . . . , J . Then, v(z) = a>z+ b for all z ∈C.
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To apply Lemma 2 to v̂(ω, z) we introduce hyperrectangles C l(α,β) that have extreme points on

the grid α+βZm.

Definition 8. Let α ∈Rm and β ∈Rm be given. For every l ∈ Zm, we define the hyperrectangle

C l(α,β) as

C l(α,β) :=
m∏
i=1

[
αi +βi(li− 1), αi +βi(li + 1)

]
.

For every value of α,β ∈Rm and l ∈Zm, the hyperrectangle C l(α,β)⊂Rm is convex. Moreover, all

its extreme points and the interior point (α1 +β1l1, . . . , αm+βmlm) are on the grid α+βZm. Thus,

if C l(α,β) ⊂ ω − Λk(dk), then we can apply Lemma 2 to v̂(ω, ·) with C := C l(α,β) to conclude

that v̂(ω, z) satisfies (10) for all z ∈C l(α,β), and thus v̂(ω, z) is affine in z over C l(α,β). Applying

Lemma 2 for all C l(α,β) that are completely contained in ω−Λk(dk), we can show that v̂(ω, z) is

affine in z over at least ω−Λk(dk + 2‖β‖). This is true since the diameter of C l(α,β) is 2‖β‖, and

Λk(dk+2‖β‖) represents all points in Λk with at least Euclidean distance dk+2‖β‖ to the boundary

of Λk. Thus, for every z ∈ ω −Λk(dk + 2‖β‖) there exists a hyperrectangle C l(α,β)⊂ ω −Λk(dk)

that contains z. Here, the diameter of C l(α,β) is defined as

max
z1,z2

{
‖z1− z2‖ : z1, z2 ∈C l(α,β)

}
= 2‖β‖.

Proposition 1 shows all linearity regions of v̂(ω, z) for fixed ω ∈Ω. These are subsets of the domain

of v̂(ω, ·) on which v̂(ω, z) is affine in z.

Proposition 1. Consider an inexact cutting plane approximation v̂(ω, z) as defined in Defini-

tion 1, and let Λk, k= 1, . . . ,K, denote the simplicial cones from Theorem 3. Then, under Assump-

tions 1 and 2, for every k = 1, . . . ,K, there exists a distance d′k ≥ 0 such that if ω − z ∈ Λk(d′k),

then

v̂(ω, z) = q>Bk
B−1
k (ω− z) +ψk(ω−α).

4.3. Bounds on the value function of an inexact cutting plane approximation

Proposition 1 defines v̂(ω, z) on the linearity regions Λk(d′k). In fact, on these linearity regions,

v(ω, z) = q>Bk
B−1
k (ω−z)+ψk(ω−z) and v̂(ω, z) = q>Bk

B−1
k (ω−z)+ψk(ω−α), so that the difference

between the two equals

v(ω, z)− v̂(ω, z) =ψk(ω− z)−ψk(ω−α), z ∈ ω−Λk(d′k).

This difference is Bk-periodic and bounded, since ψk is a bounded Bk-periodic function by Theo-

rem 3. These properties will be exploited to derive an error bound for the inexact cutting plane

approximation Q̂ in Section 4.4.
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Outside the linearity regions, i.e., on N :=Rm\
⋃K

k=1 Λk(d′k), we cannot prove such properties for

v(ω, z) and v̂(ω, z). However, we can show that the difference between the two is bounded. That

is, there exists R ∈R such that

‖v− v̂‖∞ := sup
ω,z
|v(ω, z)− v̂(ω, z)| ≤R.

To prove this result we use that N can be covered by finitely many hyperslices Hj, j ∈J , see [15].

Definition 9. Let δ > 0 and normal vector a ∈Rm\{0} be given. Then, the hyperslice H(a, δ) is

defined as

H(a, δ) := {z ∈Rm : 0≤ a>z ≤ δ}.

However, before we derive an upper bound on ‖v− v̂‖∞, we first derive a lower bound and upper

bound on the value function v̂(ω, z) of the inexact cutting plane approximation. The lower bound

follows directly from Proposition 1 and the fact that v̂(ω, z) is convex in z for every fixed ω ∈Ω.

Lemma 3. Consider an inexact cutting plane approximation v̂(ω, z) as defined in Definition 1.

Then, under Assumptions 1 and 2, we have for every ω ∈Ω and z ∈Rm that

v̂(ω, z)≥ max
k=1,...,K

{
q>Bk

B−1
k (ω− z) +ψk(ω−α)

}
.

The lower bound of v̂(ω, z) in Lemma 3 is not only valid on the linearity regions of v̂(ω, ·), but

also on ω−N . We will show that the difference between v̂(ω, z) and this lower bound is bounded.

Again, we use the fact that v̂(ω, z) is convex in z for every fixed ω ∈Ω.

Lemma 4. Consider an inexact cutting plane approximation v̂(ω, z) as defined in Definition 1.

Then, under Assumptions 1 and 2, there exists R′ ∈R such that

v̂(ω, z)− max
k=1,...,K

{
q>Bk

B−1
k (ω− z) +ψk(ω−α)

}
≤R′. (11)

Now we are ready to prove an upper bound on ‖v− v̂‖∞. The idea of the proof is that we can use

Lemma 3 and 4 to bound ‖v̂− vLP‖∞, where the LP-relaxation vLP (ω, z) of v(ω, z) is equal to

vLP (ω, z) = max
k=1,...,K

{
q>Bk

B−1
k (ω− z)

}
, (12)

and the maximum difference between v and vLP is known.

Proposition 2. Consider an inexact cutting plane approximation v̂(ω, z) as defined in Defini-

tion 1. Then, under Assumptions 1 and 2, there exists R ∈R such that

‖v− v̂‖∞ ≤R.
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4.4. Proof of error bound

In this section we give the proof of Theorem 2. Whereas the focus in Sections 4.2 and 4.3 was

on v̂(ω, z) as a function of z for fixed ω ∈Ω, we now consider the difference v(ω, z)− v̂(ω, z) as a

function of ω for fixed z ∈Rm. This is because Q(z)− Q̂(z) =Eω[v(ω, z)− v̂(ω, z)], z ∈Rm, and thus

v(ω, z)− v̂(ω, z) can be interpreted as the underlying difference function for fixed z ∈ Rm. Based

on Propositions 1 and 2, we know that for ω ∈ z+ Λk(d′k), k= 1, . . . ,K,

v(ω, z)− v̂(ω, z) =ψk(ω− z)−ψk(ω−α),

and for ω ∈ z+N , ∣∣∣v(ω, z)− v̂(ω, z)
∣∣∣≤R.

We will use these two main properties to derive an upper bound for ‖Q− Q̂‖∞ that depends on

the total variations of the one-dimensional conditional probability density functions of the random

variables in the model, showing that inexact cutting plane approximations are asymptotically

accurate.

Proof of Theorem 2. Combining Theorem 3 and Proposition 1, there exist basis matrices Bk,

corresponding simplicial cones Λk, distances d′k ≥ 0, and bounded Bk-periodic functions ψk such

that for ω− z ∈Λk(d′k),

v(ω, z)− v̂(ω, z) =ψk(ω− z)−ψk(ω−α).

Moreover, by Proposition 2, there exists R ∈R such that ‖v− v̂‖∞ ≤R.

Fix z ∈Rm and consider the difference v(ω, z)− v̂(ω, z) as a function of ω. We will use that for

ω ∈ z+ Λk(d′k), this difference is Bk-periodic, and for ω ∈ z+N , it is bounded by R. In fact, using

trivially adjusted versions of Theorems 4.6 and 4.13 in [15] we can show that there exist constants

D> 0 and C ′k > 0, k= 1, . . . ,K, such that

P{ω ∈ z+N}≤D
m∑
i=1

Eω−i

[
|∆|fi(·|ω−i)

]
, (13)

and for every k= 1, . . . ,K,∣∣∣∣∣
∫
z+Λk(d′

k
)

(ψk(t− z)−ψk(t−α))f(t)dt

∣∣∣∣∣≤C ′k
m∑
i=1

Eω−i

[
|∆|fi(·|ω−i)

]
. (14)

Then,

|Q(z)− Q̂(z)|=
∣∣∣∣∫

Rm

(v(t, z)− v̂(t, z))f(t)dt

∣∣∣∣
≤
∣∣∣∣∫
z+N

(v(t, z)− v̂(t, z))f(t)dt

∣∣∣∣+ K∑
k=1

∣∣∣∣∣
∫
z+Λk(d′

k
)

(v(t, z)− v̂(t, z))f(t)dt

∣∣∣∣∣
≤RP{ω ∈ z+N}+

K∑
k=1

∣∣∣∣∣
∫
z+Λk(d′

k
)

(v(t, z)− v̂(t, z))f(t)dt

∣∣∣∣∣ .
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Applying the bound in (13) to the first term and the bounds in (14) to the second term, we obtain

|Q(z)− Q̂(z)| ≤RD
m∑
i=1

Eω−i

[
|∆|fi(·|ω−i)

]
+

K∑
k=1

C ′k

m∑
i=1

Eω−i

[
|∆|fi(·|ω−i)

]
=C

m∑
i=1

Eω−i

[
|∆|fi(·|ω−i)

]
,

where the constant C is defined as C :=RD+
∑K

k=1C
′
k. �

5. Examples of inexact cutting planes

In this section we consider examples of inexact cutting plane approximations that are asymptoti-

cally accurate. We derive inexact mixed-integer Gomory cuts in Section 5.1, and an inexact cutting

plane approximation for a nurse scheduling problem in Section 5.2.

5.1. Inexact mixed-integer Gomory cuts

In this section we will derive inexact mixed-integer Gomory cuts that satisfy the first condition of

Assumption 2. It can be shown, analogously to Theorem 2, that these inexact cuts are asymptoti-

cally accurate, or in fact yield an asymptotic lower bound.

Consider the second-stage value function

v(ω, z) := min
yB ,yN

{
q>ByB + q>NyN : ByB +NyN = ω− z, yB ∈ YN , yN ∈ YN

}
, ω ∈Ω, z ∈Rm,

where similar as in Section 4.1, we let B denote a dual feasible basis matrix of the LP-relaxation

of v. Multiplying the equality constraint in v(ω, z) by e>i B
−1, where ei is the i-th unit vector, we

obtain

yBi
+ e>i B

−1NyN = e>i B
−1(ω− z), (15)

where yBi
denotes the i-th basic variable. Let w̄ij denote the j-th component of the vector e>i B

−1N ,

let yNj
denote the j-th non-basic variable, and let ri(ω, z) := e>i B

−1(ω − z)−
⌊
e>i B

−1(ω− z)
⌋
. If

the i-th basic variable yBi
is restricted to be integer, then we can derive from (15) the exact

mixed-integer Gomory cut∑
j∈J1

min

{
−w̄ij −b−w̄ijc

ri(ω, z)
,
w̄ij + d−w̄ije
1− ri(ω, z)

}
yNj

+
∑
j∈J2

max

{
−w̄ij
ri(ω, z)

,
w̄ij

1− ri(ω, z)

}
yNj
≥ 1, (16)

where J1 denotes the index set of integer non-basic variables yNj
and J2 the index set of continuous

non-basic variables yNj
; see e.g. [2].

Obviously, the exact mixed-integer Gomory cut in (16) is not affine in z, among others since

ri(ω, z) is not affine in z. However, if z ∈ βZm, where β := |det(B)|e with e the all-one vector,
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then under the assumption that W is integer, we can show that ri(ω, z) = ri(ω,0), and thus the

mixed-integer Gomory cut in (16) does not depend on z. This is true, since for such z, we have

e>i B
−1z = e>i

(
det(B)−1adj(B)

)
z ∈Z,

and thus

ri(ω, z) = e>i B
−1(ω− z)−

⌊
e>i B

−1(ω− z)
⌋

= e>i B
−1ω−

⌊
e>i B

−1ω
⌋

= ri(ω,0).

Similarly, if z ∈ α+ βZm with β := |det(B)|e, then ri(ω, z) = ri(ω,α). Thus, replacing ri(ω, z) by

ri(ω,α) in (16) yields an inexact mixed-integer Gomory cut that does not depend on z and is

valid for all ω and for all z on a grid of points α+ βZm. Hence, it satisfies the first condition of

Assumption 2, and thus analoguously to Theorem 2 the inexact mixed-integer Gomory cut∑
j∈J1

min

{
−w̄ij −b−w̄ijc

ri(ω,α)
,
w̄ij + d−w̄ije
1− ri(ω,α)

}
yNj

+
∑
j∈J2

max

{
−w̄ij
ri(ω,α)

,
w̄ij

1− ri(ω,α)

}
yNj
≥ 1,

is asymptotically valid for all z ∈Rm.

5.2. Nurse scheduling problem

In this section we will apply inexact cutting planes to a nurse scheduling problem, introduced by

Kim and Mehrotra [9]. In this problem, a regular work schedule for the nurses is determined in the

first stage, resulting in an available number zt of nurses per time period t= 1, . . . , T . This regular

work schedule is determined before the random demand ωt for nurses per time period is known.

Thus, it may turn out that we have a shortage or surplus of nurses in some of the time periods.

In this case, it is possible to add or subtract nurse shifts, consisting of several consecutive time

periods, after the demands ωt are known. Moreover, we penalize any remaining nurse shortages

and nurse surpluses using unit penalty costs per time period. The corresponding second-stage value

function v is given by

v(ω, z) = min
y,u1,u2

q>y+ r>1 u1 + r>2 u2 (17)

s.t. Wy−u1 +u2 = ω− z

y ∈Zn2+ , u1, u2 ∈RT ,

where y ∈ Zn2+ represents the possibility to add or subtract nurse shifts, and W is a {−1,0,1}-
matrix, modelling which time periods are contained in which shift. Kim and Mehrotra [9] show

that W is a totally unimodular matrix. Moreover, they show that if z ∈ZT , then the cutting planes

Wy− D̂(ω)u1 ≤ bωc− z, with D̂(ω) a diagonal matrix with t-th diagonal component D̂tt(ω) equal

to

D̂tt(ω) =
1

1−ωt + bωtc
, t= 1, . . . , T,
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are valid for all ω ∈ Ω. In particular, combined with the constraints Wy − u1 + u2 = ω − z, they

completely define the integer hull Ȳ (ω, z) of the feasible region Y (ω, z) of v(ω, z). That is, for every

ω ∈Ω and z ∈ZT ,

Ȳ (ω, z) =
{

(y,u1, u2)∈Rn2+2T
+ : Wy−u1 +u2 = ω− z, Wy− D̂(ω)u1 ≤ bωc− z

}
.

If we assume, contrary to [9], that z is not necessarily integral, then we may use the inexact cutting

planes Wy− D̂(ω)u1 ≤ bωc− z to derive the inexact cutting plane approximation

v̂(ω, z) = min
y,u1,u2

q>y+ r>1 u1 + r>2 u2

s.t. Wy−u1 +u2 = ω− z

Wy− D̂(ω)u1 ≤ bωc− z

y ∈Rn2+ , u1, u2 ∈RT .

Observe that v̂(ω, z) satisfies Assumption 2, so that by Theorem 2, the corresponding inexact

cutting plane approximation Q̂ is asymptotically accurate. In Example 3 below, we numerically

show the actual performance of this inexact cutting plane approximation for the one-dimensional

second-stage value function of Example 1 in Section 2, which can be considered a special case

of (17).

Example 3. Consider the second-stage value function v(ω, z) of Example 1,

v(ω, z) = r(ω− z) + min
y,u1

(q− r)y+ 2ru1

s.t. y−u1 ≤ ω− z

y ∈Z+, u1 ∈R+,

and its inexact cutting plane approximation defined in (7). Let ω be a normal random variable

with mean µ and standard deviation σ. Then, as shown in Example 2, the total variation |∆|f

of the probability density function f of ω equals |∆|f = σ−1
√

2/π. Figure 3 shows ‖Q − Q̂‖∞,

the maximum difference between the expected value function Q and its inexact cutting plane

approximation Q̂, as a function of the standard deviation σ for q = 1 and r = 2. We observe that

this difference decreases if σ increases. This is in line with Theorem 2, since the total variation

|∆|f of a normal probability density function f decreases if the standard deviation σ increases.

6. Discussion

We consider a new solution method for solving two-stage mixed-integer stochastic programs

(MISPs). Instead of applying exact cuts to the second-stage feasible regions that are always valid,
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‖Q− Q̂‖∞ ↑

0.5

1.0

Figure 3 The maximum difference between Q and its inexact cutting plane approximation Q̂ of Example 3, with

q= 1 and r= 2, as a function of the standard deviation σ of a normal random variable ω.

we propose to use inexact cutting planes that are affine in the first-stage decision variables. The

advantage is that the approximating problem, that uses these inexact cuts, is convex, and can thus

be solved efficiently using techniques from convex optimization.

For simple integer recourse models, we show that we can obtain the α-approximations of Klein

Haneveld et al. [10] using inexact cutting planes. A direct consequence of this result is that we

obtain an error bound on the quality of the solution obtained using inexact cutting planes. This

bound is small if the total variation of the probability density function of the random variable

in the model is small. For general MISPs we show that under mild assumptions inexact cutting

plane approximations are asymptotically accurate. For general MISPs we also derive inexact mixed-

integer Gomory cuts, and we derive asymptotically accurate inexact cutting planes for a nurse

scheduling problem. Numerical experiments show that the error of using the inexact cutting planes

indeed converges to zero if the total variations of the random variables in the model go to zero.

A direction for future research is to derive problem-specific inexact cutting planes for specific

applications of two-stage MISPs. Moreover, tighter error bounds may be derived for these problem-

specific inexact cutting plane approximations using the special structure of the problems, similar

as for simple integer recourse models. Another future research direction is to combine exact and

inexact cutting planes to obtain more accurate approximations at the expense of increasing the

computational effort of solving the approximation.

Appendix

Proof of Lemma 2. Since C is convex, every z ∈C can be written as a convex combination of

its extreme points:

z =
J∑
j=1

µjz
j,
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with
∑J

j=1 µj = 1, and µj ≥ 0, j = 1, . . . , J . Since v is convex, this implies that for all z ∈C

v(z) = v
( J∑
j=1

µjz
j
)
≤

J∑
j=1

µjv(zj) =
J∑
j=1

µj(a
>zj + b) = a>z+ b. (18)

To prove that also v(z)≥ a>z + b for all z ∈ C, assume for contradiction that there exists z̄ ∈ C

such that v(z̄)<a>z̄+ b. Since C is convex and z0 is an interior point of C there exists ε > 0 such

that ẑ := z0 + ε(z0− z̄)∈C. This point ẑ is defined in such a way that z0 can be written as a convex

combination of z̄ and ẑ:

z0 =
1

1 + ε
ẑ+

ε

1 + ε
z̄.

Since v is convex, this implies that

v(z0)≤ 1

1 + ε
v(ẑ) +

ε

1 + ε
v(z̄)<

1

1 + ε
(a>ẑ+ b) +

ε

1 + ε
(a>z̄+ b) = a>z0 + b, (19)

where we use that v(z̄)<a>z̄+ b by assumption and v(ẑ)≤ a>ẑ+ b by (18). Since (19) contradicts

the assumption that v(z0) = a>z0 + b, we conclude that v(z) = a>z+ b for all z ∈C. �

Proof of Proposition 1. Since v̂(ω, z) = v(ω, z) for all ω ∈ Ω and z ∈ α+ βZm, it follows from

Theorem 3 that for every k= 1, . . . ,K, there exists dk such that for all ω ∈Ω and z ∈ α+βZm with

ω− z ∈Λk(dk),

v̂(ω, z) = q>Bk
B−1
k (ω− z) +ψk(ω− z).

Fix ω ∈ Ω. Then, ψk(ω − z) is Bk-periodic in z and thus ψk(ω − z) = ψk(ω − z − det(Bk)l) for

every l ∈ Zm by Lemma 4.8 in [15]. Define δk := det(Bk)β ∈ Zm and let l ∈ Zm be given, and

consider the hyperrectangle C l(α, δk). Let zj, j = 1, . . . , J , denote its extreme points and let z0 :=

(α1 +δk1 l1, . . . , αm+δkmlm) be an interior point. If C l(α, δk)⊂ ω−Λk(dk), then we can apply Lemma 2

with a := −q>Bk
B−1
k , b := q>Bk

B−1
k ω + ψk(ω − α), and C := C l(α, δk) to conclude that v̂(ω, z) =

q>Bk
B−1
k (ω−z)+ψk(ω−α) for all z ∈C l(α, δk). Since the diameter of C l(α, δk) is 2‖δk‖, we conclude

that the result holds for all ω− z ∈Λk(dk + 2‖δk‖). Indeed, ω− z will be in ω−C l(α, δk) for some

l ∈Zm. The claim now follows by defining d′k := dk + 2‖δk‖. �

Proof of Lemma 3. Fix ω ∈Ω. Then, by Proposition 1 it follows that for every k= 1, . . . ,K,

v̂(ω, z) = q>Bk
B−1
k (ω− z) +ψk(ω−α), z ∈ ω−Λk(d′k).

Since v̂(ω, z) is convex in z, and affine on ω−Λk(d′k), we can derive a subgradient inequality for

each k= 1, . . . ,K:

v̂(ω, z)≥ q>Bk
B−1
k (ω− z) +ψk(ω−α), z ∈Rm.

Combining these inequalities over all k= 1, . . . ,K, yields the desired result. �
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Proof of Lemma 4. Fix ω ∈Ω. By Proposition 1, there exist distances d′k ≥ 0 such that for every

k= 1, . . . ,K,

v̂(ω, z) = q>Bk
B−1
k (ω− z) +ψk(ω−α), z ∈ ω−Λk(d′k).

Thus, on the linearity regions ω−Λk(d′k), v̂(ω, z) equals its lower bound from Lemma 3. Therefore,

we only have to show (11) for z ∈ ω −N . To this end, let z ∈ ω −N be given. Since N can be

covered by finitely many hyperslices, there exist aj ∈Rm\{0} and δj > 0, j ∈J , such that

N ⊂
⋃
j∈J

Hj,

where Hj :=H(aj, δj), j ∈J . We will construct points z1 and z2 in the linearity regions of v̂(ω, ·),

so that z is a convex combination of z1 and z2. Then, we can use that v̂(ω, z) is convex in z to derive

an upper bound on v̂(ω, z) in terms of v̂(ω, z1) and v̂(ω, z2). Since z1 and z2 are in the linearity

regions, these values are known.

To construct such z1 and z2, let d ∈Rm\{0} be a direction of unit length not parellel to any of

the hyperslices Hj, and thus not orthogonal to any of the normal vectors aj, j ∈J . Then, a>j d 6= 0,

j ∈J , and ‖d‖= 1. We consider the line through z with direction d and define the halflines L1 and

L2 as

L1 := {z+µd : µ∈R+} and L2 := {z−µd : µ∈R+}.

Since the direction d is not parallel to any of the hyperslices, we have L1 6⊂
⋃
j∈J Hj and L2 6⊂⋃

j∈J Hj, and thus Li ∩ (ω −
⋃K

k=1 Λk(d′k)) 6= ∅, i = 1,2. This means that it is possible to select

z1, z2 ∈ ω−
⋃K

k=1 Λk(d′k) on L1 and L2, respectively, with minimal distance to z:

zi := arg min
z′

{
‖z− z′‖ : z′ ∈Li ∩

(
ω−

K⋃
k=1

Λk(d′k)
)}
, i= 1,2.

Since z is on the line segment between z1 to z2, we can write z as a convex combination z =

µz1 + (1 − µ)z2 of z1 and z2 with µ ∈ [0,1]. We will use the convexity of v̂(ω, ·) to derive an

upper bound on v̂(ω, z). Here, we will assume without loss of generality that z1 ∈ ω−Λk1(d′k1) and

z2 ∈ ω−Λk2(d′k2) with k1, k2 ∈ {1, . . . ,K}. We obtain

v̂(ω, z)≤ µv̂(ω, z1) + (1−µ)v̂(ω, z2)

= µ
(
q>Bk1

B−1
k1

(ω− z1) +ψk1(ω−α)
)

+ (1−µ)
(
q>Bk2

B−1
k2

(ω− z2) +ψk2(ω−α)
)
.

To obtain the bound in (11) on the difference between v̂(ω, z) and its lower bound, we subtract

this lower bound from both the left- and right-hand side of the inequality above. Defining k∗ :=
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arg maxk=1,...,K{q>Bk
B−1
k (ω − z) + ψk(ω − α)}, the difference between v̂(ω, z) and its lower bound

can then be bounded by

µ
(
q>Bk1

B−1
k1

(ω− z1) +ψk1(ω−α)− q>Bk∗
B−1
k∗ (ω− z)−ψk

∗
(ω−α)

)
+ (1−µ)

(
q>Bk2

B−1
k2

(ω− z2) +ψk2(ω−α)− q>Bk∗
B−1
k∗ (ω− z)−ψk

∗
(ω−α)

)
.

Since k1 and k2 are not necessarily the maximizing index for maxk=1,...,K{q>Bk
B−1
k (ω− z) +ψk(ω−

α)}, we may replace k∗ by k1 and k2, respectively, to obtain after straightforward simplifications,

v̂(ω, z)− max
k=1,...,K

{
q>Bk

B−1
k (ω− z) +ψk(ω−α)

}
≤ µq>Bk1

B−1
k1

(z1− z) + (1−µ)q>Bk2
B−1
k2

(z2− z).

We will bound the right-hand side in terms of the distance ‖z1− z2‖ between z1 and z2. Here, we

use λ∗i := maxk=1,...,K |q>Bk
(Bk)

−1ei|, for i= 1, . . . ,m, where ei is the i-th unit vector. We have

v̂(ω, z)− max
k=1,...,K

{
q>Bk

B−1
k (ω− z) +ψk(ω−α)

}
≤ µ

m∑
i=1

λ∗i |z1
i − zi|+ (1−µ)

m∑
i=1

λ∗i |z2
i − zi|

≤ µ
m∑
i=1

λ∗i ‖z1− z‖+ (1−µ)
m∑
i=1

λ∗i ‖z2− z‖

≤ ‖z1− z2‖
m∑
i=1

λ∗i , (20)

where the last inequality holds since z is on the line segment between z1 to z2, and thus ‖z1− z‖ ≤
‖z1− z2‖ and ‖z2− z‖ ≤ ‖z1− z2‖.

It remains to derive an upper bound on ‖z1 − z2‖. To do so, observe that ω − z is on the line

segment ω−L between ω−z1 and ω−z2. Moreover, in the worst-case this line segment is completely

contained in the union of the hyperslices Hj, j ∈J . Hence,

‖z1−z2‖= ‖(ω−z1)− (ω−z2)‖ ≤ ‖(ω−L)∩ (
⋃
j∈J

Hj)‖= ‖
⋃
j∈J

((ω−L)∩Hj)‖ ≤
∑
j∈J

‖(ω−L)∩Hj‖,

where ‖L‖ denotes the total length of the line segments in L. To find ‖(ω−L)∩Hj‖, observe that

ẑ ∈L satisfies ẑ = z− µ̂d for some µ̂∈R. Moreover, ω− ẑ ∈Hj :=H(aj, δj) if 0≤ a>j (ω−z+ µ̂d)≤ δj,
or equivalently if 

−a>j (ω− z)
a>j d

=: µ≤ µ̂≤ µ :=
δj − a>j (ω− z)

a>j d
, if a>j d> 0,

δj − a>j (ω− z)
a>j d

=: µ≤ µ̂≤ µ :=
−a>j (ω− z)

a>j d
, if a>j d< 0.

Then, ‖(ω−L)∩Hj‖= (µ−µ)‖d‖=
δj

|a>j d|
, where we use that ‖d‖= 1. Thus, by defining

R′ :=
( m∑
i=1

λ∗i

)(∑
j∈J

δj
|a>j d|

)
,

the claim follows from combining ‖z1− z2‖ ≤
∑

j∈J
δj

|a>j d|
and (20). �



Romeijnders and van der Laan Inexact cutting planes for two-stage mixed-integer stochastic programs 23

Proof of Proposition 2. Consider the LP-relaxation vLP (ω, z) of v(ω, z) as defined in (12).

Then, by, e.g., [3] and [6], there exists R′′ such that ‖v − vLP‖∞ ≤ R′′. Moreover, by combining

Lemma 3 and 4, we conclude that ‖vLP − v̂‖∞ ≤ R′ + maxk=1,...,K sups∈Rm |ψk(s)|. If we define

R :=R′′+R′+ maxk=1,...,K sups∈Rm |ψk(s)|, then

‖v− v̂‖ ≤ ‖v− vLP‖+ ‖vLP − v̂‖ ≤R′′+R′+ max
k=1,...,K

sup
s∈Rm

|ψk(s)|=:R,

where the first inequality follows from the triangle inequality. �
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[7] D. Gade, S. Küçükyavuz, and S. Sen. Decomposition algorithms with parametric Gomory cuts for

two-stage stochastic integer programs. Mathematical Programming, 144:39–64, 2014.

[8] Y. Guan, S. Ahmed, and G.L. Nemhauser. Cutting planes for multistage stochastic integer programs.

Operations Research, 57:287–298, 2009.

[9] K. Kim and S. Mehrotra. A two-stage stochastic integer programming approach to integrated staffing

and scheduling with application to nurse management. Operations Research, 63:1431–1451, 2015.

[10] W.K. Klein Haneveld, L. Stougie, and M.H. van der Vlerk. Simple integer recourse models: convexity

and convex approximations. Mathematical Programming, 108:435–473, 2006.



24 Romeijnders and van der Laan Inexact cutting planes for two-stage mixed-integer stochastic programs

[11] G. Laporte and F.V. Louveaux. The integer L-shaped method for stochastic integer programs with

complete recourse. Operations Research Letters, 13:133–142, 1993.

[12] F.V. Louveaux and M.H. van der Vlerk. Stochastic programming with simple integer recourse. Mathe-

matical Programming, 61:301–325, 1993.

[13] L. Ntaimo. Disjunctive decomposition for two-stage stochastic mixed-binary programs with random

recourse. Operations Research, 58:229–243, 2010.

[14] A.H.G. Rinnooy Kan and L. Stougie. Stochastic integer programming. In Yu. Ermoliev and R.J-

B Wets, editors, Numerical Techniques for Stochastic Optimization, volume 10 of Springer Series in

Computational Mathematics, pages 201–213. Springer, 1988.

[15] W. Romeijnders, R. Schultz, M.H. van der Vlerk, and W.K. Klein Haneveld. A convex approximation for

two-stage mixed-integer recourse models with a uniform error bound. SIAM Journal on Optimization,

26:426–447, 2016.

[16] W. Romeijnders, M.H. van der Vlerk, and W.K. Klein Haneveld. Convex approximations of totally

unimodular integer recourse models: A uniform error bound. SIAM Journal on Optimization, 25:130–

158, 2015.

[17] W. Romeijnders, M.H. van der Vlerk, and W.K. Klein Haneveld. Total variation bounds on the expec-

tation of periodic functions with applications to recourse approximations. Mathematical Programming,

157:3–46, 2016.

[18] S. Sen and J.L. Higle. The C3 theorem and a D2 algorithm for large scale stochastic mixed-integer

programming: Set convexification. Mathematical Programming, 104:1–20, 2005.

[19] N. van der Laan, W. Romeijnders, and M.H. van der Vlerk. Higher-order total variation bounds for

expectations of periodic functions and simple integer recourse approximations. Computational Manage-

ment Science, 2018. https://doi.org/10.1007/s10287-018-0315-z.

[20] M.H. van der Vlerk. Stochastic progamming with integer recourse. Thesis Rijksuniversiteit Groningen,

Theses on Systems, Organisations, and Management, Labyrint Publications, Capelle a/d IJssel, 1995.

[21] M.H. van der Vlerk. Convex approximations for complete integer recourse models. Mathematical

Programming, 99:297–310, 2004.

[22] D.W. Walkup and R.J.-B. Wets. Lifting projections of convex polyhedra. Pacific Journal of Mathe-

matics, 28:465–475, 1969.
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