
 
 
 

 
 
 
 
 

1

Niels van der Laan 

Ward Romeijnders 

Maarten H. van der Vlerk 

 

 

 

  

 

 

 
2017-014-OPERA 

 

Higher-order Total Variation Bounds 

for Expectations of Periodic Functions 

and Simple Integer Recourse 

Approximations 

 
 



 
 
 

 
 
 
 
 

2

SOM is the research institute of the Faculty of Economics & Business at 
the University of Groningen. SOM has six programmes:  
-  Economics, Econometrics and Finance 
-  Global Economics & Management 
-  Organizational Behaviour 
-  Innovation & Organization 
-  Marketing 
-  Operations Management & Operations Research 

Research Institute SOM 
Faculty of Economics & Business 
University of Groningen 
 
Visiting address: 
Nettelbosje 2 
9747 AE  Groningen 
The Netherlands 
 
Postal address: 
P.O. Box 800 
9700 AV   Groningen 
The Netherlands 
 
T +31 50 363 9090/3815 
 
www.rug.nl/feb/research 

SOM RESEARCH REPORT 12001 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
 
 
 

3

Higher-order Total Variation Bounds for 

Expectations of Periodic Functions and Simple 

Integer Recourse Approximations 
 
 
 
 
 
Niels van der Laan 
University of Groningen, Faculty of Economics and Business, Department of Operations, 
The Netherlands 
 
Ward Romeijnders 
University of Groningen, Faculty of Economics and Business, Department of Operations, 
The Netherlands 
 
Maarten H. van der Vlerk 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
  
  
 
 
 
 
 



Higher-order total variation bounds for expectations of

periodic functions and simple integer recourse

approximations

Niels van der Laan Ward Romeijnders Maarten H. van der Vlerk∗

July 19, 2017

Abstract

We derive bounds on the expectation of a class of periodic functions using the total
variations of higher-order derivatives of the underlying probability density function.
These bounds are a strict improvement over those of Romeijnders et al. [13], and we
use them to derive error bounds for convex approximations of simple integer recourse
models. In fact, we obtain a hierarchy of error bounds that become tighter if the total
variations of additional higher-order derivatives are taken into account. Moreover,
each error bound decreases if these total variations become smaller. The improved
bounds may be used to derive tighter error bounds for convex approximations of
more general recourse models involving integer decision variables.

1 Introduction

Consider the two-stage recourse model with random right-hand side

η∗ := min
x

{
cx+Q(z) : Ax ≥ b, z = Tx, x ∈ X ⊂ Rn1

+

}
, (1)

where the recourse function Q is defined for the tender variables z ∈ Rm as

Q(z) := Eω [v(ω − z)] ,

and the value function v is defined for s ∈ Rm as

v(s) := min
y

{
qy : Wy ≥ s, y ∈ Y ⊂ Rn2

+

}
.

This model describes a two-stage decision problem under uncertainty. The uncertainty
arises from the random vector ω of which the distribution is known. In the first stage, a
decision x has to be made while the realization of ω is not yet available, whereas in the
second stage, the realization of ω is known and recourse actions y can be taken to repair
infeasibilities of the random constraints Tx ≥ ω. The model is called an integer recourse
model if Y = Zn2

+ . If in addition W = Im, then the model is referred to as a simple
integer recourse (SIR) model. More general formulations of (1) exist, with uncertainty in
the technology matrix T and cost parameters q, see e.g. the textbooks [2, 19].

Throughout this paper, we make the following assumptions, which guarantee that Q
is finite everywhere.

∗Maarten H. van der Vlerk passed away during the writing of this paper
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(i) The recourse is complete: for all s ∈ Rm, there exists a y ∈ Y such that Wy ≥ s, so
that v(s) <∞.

(ii) The recourse is sufficiently expensive; v(s) > −∞ for all s ∈ Rm.

(iii) E[|ωi|] is finite for all i = 1, . . . ,m.

Recourse models are highly relevant in practice, as demonstrated by numerous appli-
cations in problems where uncertainty plays a role. Areas of application include energy,
telecommunication, production planning, and environmental control see e.g. [5, 22]. Fur-
thermore, integrality restrictions on the recourse actions arise naturally when modelling
real-life situations, for example to capture on/off decisions or batch size restrictions.

Unfortunately, solving integer recourse problems is generally time-consuming and
practically impossible, because the recourse function Q is in general non-convex (Rin-
nooy Kan and Stougie [9]). Traditional solution methods typically combine ideas from
deterministic mixed-integer programming and stochastic continuous programming, see
e.g. [1, 3, 4, 8, 16, 7, 18, 23], and the survey papers by [10, 15, 17].

However, in this paper we focus on an alternative solution methodology introduced
by Van der Vlerk [20]. His approach is to approximate the non-convex recourse function Q
by a convex approximation Q̂, obtaining an approximating model for (1). The advantage
is that the approximating model can be solved efficiently using known convex optimization
techniques to obtain an approximate solution (x̂, ẑ) for (1).

In the literature, convex approximations are typically derived by simultaneously mod-
ifying the underlying recourse structure (Y, q,W ) and the distribution of the random
vector ω. For example, Klein Haneveld et al. [6] propose the so-called α-approximations
for SIR models, Van der Vlerk [21] studies a class of convex approximations for the gen-
eral integer case, and Romeijnders et al. [13] propose a convex approximation, the shifted
LP-relaxation, for integer recourse problems with a totally unimodular (TU) recourse
matrix W . The latter approximation is generalized to the general mixed-integer recourse
case by Romeijnders et al. [12].

To guarantee the performance of the approximating solution (x̂, ẑ) in the original
model (1), Romeijnders et al. [11] show that for every approximation Q̂,

cx̂+Q(ẑ)− η∗ ≤ 2 ||Q̂−Q||∞ := 2 sup
z∈R
|Q̂(z)−Q(z)|.

That is, the absolute optimality gap of (x̂, ẑ) is at most 2‖Q̂ − Q‖∞. For this reason,
bounds on ‖Q̂ − Q‖∞ are used to guarantee the quality of the approximating solution
(x̂, ẑ). Such error bounds are derived by Klein Haneveld et al. [6] and by Romeijnders
et al. [11] for various types of convex approximations. They are expressed in terms of
the total variations of the marginal probability density functions (pdf) of the random
right-hand side vector ω. For general mixed-integer and TU integer recourse models,
Romeijnders et al. [12] and Romeijnders et al. [13], respectively, derive similar error
bounds by making use of periodicity in the difference of the underlying value functions of
the recourse function Q and its convex approximation Q̂. In this way, bounds on ‖Q̂−Q‖∞
are obtained by deriving total variation bounds on the expectation of periodic functions.
Since we also exploit this relationship between expectations of periodic functions and the
difference between Q̂ and Q, we explain this relationship in more detail in Section 2.

Romeijnders et al. [13] use worst-case analysis to prove that their error bounds are tight
for certain piecewise constant pdf. For other pdf, there may be a considerable difference
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between the error bound and the actual error as shown by numerical experiments on a
fleet allocation and routing problem and on an investment problem in stochastic activity
networks (Romeijnders et al. [14]). Motivated by these observations, we improve the erorr
bounds of Romeijnders et al. [13] by using information on the higher-order derivatives of
the underlying pdf of the random variables in the model. To be specific, we use that the
total variation of the higher-order derivatives of the underlying pdf can be used to improve
the error bound. The intuition behind our approach is that by imposing restrictions on
the higher-order derivatives of the underlying pdf we are able to exclude the piecewise
constant pdf, which have jump discontinuities.

To obtain these error bounds we improve the existing bounds on the expectation of
periodic functions by Romeijnders et al. [13] using higher-order total variations, i.e. total
variations of the higher-order derivatives of the underlying marginal pdfs. This is the
main contribution of this paper since these bounds may be used to improve error bounds
of convex approximations for mixed-integer recourse models in general. We illustrate
their potential by improving error bounds for the shifted LP-relaxation approximation
of SIR models by Romeijnders et al. [13]. The improved error bounds decrease with the
total variations of the underlying pdf and its higher-order derivatives.

The remainder of this paper is organized as follows. Section 2 describes in more detail
the relationship between error bounds for the shifted LP-relaxation of integer recourse
models and bounds on the expectation of periodic functions. In Section 3, we improve
bounds on the expectation of a class of periodically monotone functions, and in Section 4
we illustrate how these results can be applied in the setting of SIR models. In Section 5
we conclude and summarize our results.

2 Total variation error bounds

In this section, we describe parts of the procedure employed by Romeijnders et al. [13]
to derive an error bound for the so-called shifted LP-relaxation approximation Q̂ of Q for
TU integer recourse models. The idea behind this approximation is to simultaneously
relax the integrality restrictions in the model and to perturb the random right-hand side
vector ω.

Definition 1. The shifted LP-relaxation Q̂ of the mixed-integer recourse function Q is
defined as

Q̂(z) := Eω
[
min
y

{
qy : Wy ≥ ω +

1

2
em − z, y ∈ Rn2

+

}]
, z ∈ Rm,

where em is the m-dimensional all-one vector.

The shifted LP-relaxation is a special case of the convex approximation for general
two-stage mixed-integer recourse models by Romeijnders et al. [12]. Here, we focus on
the one-dimensional SIR case. Partly this is for simplicity, but we are also inspired by the
fact that Romeijnders et al. [13] derive an error bound for the TU integer recourse case
using one-dimensional results. Setting q = 1 and W = 1, the integer recourse function Q
reduces to

Q(z) = Eω
[
dω − ze+

]
, z ∈ R,
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where d·e denotes the round-up function and dse+ := max{0, dse}, s ∈ R. The shifted
LP-relaxation then becomes

Q̂(z) = Eω
[
(ω − z + 1/2)

+
]
, z ∈ R.

Since ||Q̂−Q||∞ is the quantity of interest, consider

sup
z∈R

∣∣∣Q̂(z)−Q(z)
∣∣∣ = sup

z∈R

∣∣∣E [ψ (ω − z + 1/2)]
∣∣∣, (2)

with underlying difference function ψ(t) := (t)+ − dt− 1/2e+, see Figure 1.

-2 -1 0 1 2 3

-1/2

1/2

Figure 1: The difference function ψ.

If we ignore the positive part operators and define

ϕ(t) := t− dt− 1/2e , (3)

then ϕ is a periodic function with period p = 1 and mean value ν = p−1
∫ p

0
ϕ(t)dt = 0.

The function ψ, however, is only half-periodic, that is

ψ(t) =

{
0, t ≤ 0,

ϕ(t), t ≥ 0.
(4)

Romeijnders et al. [13] use this property to derive error bounds for the shifted LP-
relaxation. Similarly, Romeijnders et al. [12] make use of asymptotic periodicity results for
mixed-integer programs to find error error bounds for the general mixed-integer recourse
case.

The error bounds are based on a worst-case approach with respect to the total variation
|∆|f of the underlying pdf f of ω, since the expectation in (2) is intractable in general.
The following definition of total variation is taken directly from Romeijnders et al. [13].
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Definition 2. Let f : R→ R be a real-valued function, and let I ⊂ R be an interval. Let
Π(I) denote the set of all finite ordered sets P = {x1, . . . , xN+1} with x1 < · · · < xN+1

in I. Then, the total variation of f on I, denoted |∆|f(I), is defined as

|∆|f(I) = sup
P∈Π(I)

Vf (P ),

where

Vf (P ) =

N∑
i=1

|f(xi+1)− f(xi)|.

Write |∆|f := |∆|f(R). A function f is said to be of bounded variation if |∆|f is finite.

The worst-case approach adopted by Romeijnders et al. [13] is to derive a bound, for
any bounded periodic function ϕ and B ∈ R with B > 0, on

M(ϕ,B) := sup
f∈F
{Ef [ϕ(ω)] : |∆|f ≤ B} ,

where F denotes the set of all continuous pdf of bounded variation. This bound is used
to derive an error bound on ‖Q̂ − Q‖∞ in (2), presented in Theorem 1 below. We will
improve the bounds on the expectation of periodic and half-periodic functions, which
directly leads to an improved error bound for SIR models.

Theorem 1. Consider the simple integer recourse function Q defined as

Q(z) = Eω
[
dω − ze+

]
, z ∈ R,

and its shifted LP-relaxation approximation Q̂, defined as

Q̂(z) = Eω

[(
ω − z +

1

2

)+
]
, z ∈ R,

where ω is a continuous random variable with pdf f of bounded variation. Then

sup
z∈R

∣∣∣Q̂(z)−Q(z)
∣∣∣ ≤ 1

2
h(|∆|f),

where

h(t) =

{
t
8 , 0 < t ≤ 4,

1− 2
t , t ≥ 4.

Proof. See Romeijnders et al. [13]

Romeijnders et al. [13] show that there exist piecewise constant pdf for which the error

bound in Theorem 1 is tight. For example, for B ≥ 4, the pdf f̂ : R→ R defined as

f̂(x) =

{
B
2 , 0 < x ≤ 2

B ,

0, otherwise,

satisfies |∆|f̂ = B and

sup
z∈R

∣∣∣Q̂(z)−Q(z)
∣∣∣ =

1

2
h(|∆|f̂).
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Remark 1. Observe that f̂ can be interpreted as a pdf with |∆|f̂ ′ = +∞.

In the next sections we will assume that f is continuously differentiable and that its
derivative f ′ is of bounded variation. In this way, we exclude piecewise constant densities
such as f̂ . By using the higher-order total variations of f we are able to derive tighter
bounds.

3 Improving bounds on the expectation of periodic
functions

In this section, we improve the bounds on the expectation of periodic functions derived
by Romeijnders et al. [13] for the class of point-symmetric periodic functions (see Defi-
nition 7). Next to that, we improve bounds on the expectation of half-periodic functions
ψ : R→ R, which are of the form

ψ(x) =

{
0, x < 0,

ϕ(x), x ≥ 0,
(5)

where ϕ is a point-symmetric periodic function.
The organization of this section is as follows. In Section 3.1, we consider packed

densities, a concept introduced by Romeijnders et al. [13] which we generalize to higher-
order derivatives. Next, in Section 3.2, we introduce point-symmetric periodic functions,
the class of periodic functions for which we are able to derive results. In Section 3.3 we
use the concept of bound propagation to derive a hierarchy of total variation bounds. In
Section 3.4, we present bounds on the expectation of periodic and half-periodic functions.

3.1 Higher-order derivatives of packed densities

The main contribution of this paper is to generalize the results by Romeijnders et al.
[13] to higher-order derivatives. The key insight here is that including information on the
total variation and the maximum norm of higher-order derivatives of the underlying pdf
leads to improved expectation bounds. We generalize several definitions by Romeijnders
et al. [13] to allow for these elements to be included in our analysis. They consider the set
F containing all one-dimensional pdf of bounded variation. In Definition 3, we introduce
the sets Fn, n ∈ N, which satisfy the relationship F ⊃ F0 ⊃ F1 ⊃ . . . .

Definition 3. Let Fn denote the set of one-dimensional pdf f , such that the first n
derivatives of f exist, are continuous, and are of bounded variation. Denote the k-th
derivative of f by f (k) and write f = f (0).

Definition 4. For all bounded integrable functions ϕ : R → R and positive constants
B := (B0, . . . , Bn) and C := (C0, . . . , Cn) define Mn as

Mn(ϕ,B,C) := sup
f∈Fn

{
|Ef [ϕ(ω)]| : |∆|f (k) ≤ Bk, ||f (k)||∞ ≤ Ck, for k = 0, . . . , n

}
,

where || · ||∞ denotes the maximum norm defined as

||f ||∞ := max
t∈R
|f(t)|.
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Remark 2. In Definition 4, we could have suppressed the constants C0, . . . , Cn, since an
upper bound Bk on |∆|f (k) directly implies an upper bound Bk

2 on ||f (k)||∞. However,
these bounds may be larger than Ck so that by including these constants we may obtain
tighter bounds.

The main goal of this section is to derive a bound on Mn(ϕ,B,C). This is useful,
because such a bound can be used to derive performance guarantees for convex approx-
imations of mixed-integer recourse functions. We derive such bounds for periodic and
half-periodic functions ϕ. The key objects of our analysis are packed densities, intro-
duced by Romeijnders et al. [13], which are functions defined on [0, p] such that for either
periodic of half-periodic functions φ with period p,

Ef [ϕ(ω)] =

∫ p

0

ϕ(x)fp(x)dx.

For periodic functions ϕ, Romeijnders et al. [13] define this packed density as

fp(x) :=
∑
k∈Z

f(x+ pk), x ∈ [0, p].

Intuitively, fp(x) represents the sum of the densities corresponding to ϕ(x) and ϕ(x+pk)
for every k ∈ Z \ {0}. For half-periodic functions ϕ, however, we require an alternative
packed density, which we call the half-packed density. This packed density does not include
the values of f(x + pk) for k < 0, since ϕ is only half-periodic and thus ϕ(x + pk) = 0
for k < 0. Definition 5 below contains the definitions of both the original and the new
packed density.

Definition 5. For all f ∈ F0 and p ∈ R with p > 0, define the classical packed density
fp : [0, p]→ R as

fp(x) :=
∑
k∈Z

f(x+ pk), x ∈ [0, p]

Further, define the half-packed density f̂p : [0, p]→ R as

f̂p(x) =
∞∑
k=0

f(x+ pk), x ∈ [0, p].

Remark 3. Note that the half-packed density does not integrate to one in general, as
opposed to the classical packed density. As a result, the half-packed density cannot be
interpreted as a pdf.

Remark 4. We define the (higher-order) derivatives of the classical packed density and
the half-packed density at the endpoints of the closed interval [0, p] by their one-sided
derivatives, provided that they exist.

Romeijnders et al. [13] show that the total variation of f can be used to bound the
total variation of fp on [0, p]. Interestingly, similar bounds can be derived for the total

variation of half-packed densities f̂p on [0, p]. Moreover, similar bounds also hold for
higher-order derivatives f (k), k = 1, . . . , n, of f .
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Lemma 1. Let n ∈ N be given and let f ∈ Fn. Consider its corresponding classical
packed density fp and half-packed density f̂p, as in Definition 5. Then, for k = 0, . . . , n,

(i) f
(k)
p and f̂

(k)
p exist and are continuous on [0, p],

(ii) f
(k)
p (0) = f

(k)
p (p) and f̂

(k)
p (0) = f̂

(k)
p (p) + f (k)(0), and

(iii) |∆|f (k)
p ([0, p]) ≤ |∆|f (k) and |∆|f̂ (k)

p ([0, p]) ≤ |∆|f (k) − |f (k)(0)|.

Moreover, for all bounded integrable periodic functions ϕ with period p, and half-periodic
functions ψ of the form

ψ(x) =

{
0, x < 0,

ϕ(x), x ≥ 0,

(iv) Ef [ϕ(ω)] =
∫ p

0
ϕ(x)fp(x)dx and Ef [ψ(ω)] =

∫ p
0
ϕ(x)f̂p(x)dx.

Proof. We refer to the proof of corresponding properties involving packed densities in
Romeijnders et al. [13].

Observe that the properties involving the classical packed density generalize readily
to higher-order derivatives. With respect to the half-packed density, notice the additional
terms f (k)(0) and −|f (k)(0)| in properties (ii) and (iii), respectively. These terms result
from the fact that the half-packed density only sums over the non-negative integers.

In our analysis in the next sections, we will initially not make a distinction between
the classical packed density and the half-packed density. This is possible because they
belong to the broader class of packed densities, which we introduce in Definition 6.

Definition 6. For a given n ∈ N and p ∈ R with p > 0, let g : [0, p] → R be an n
times continuously differentiable function such that its first n derivatives are of bounded
variation on the interval [0, p]. Assume γk := g(k)(p)−g(k)(0) is bounded for k = 0, . . . , n.
Then g is referred to as a packed density with discontinuities γ = (γ0, . . . , γn).

Indeed, from Lemma 1 it follows directly that both the classical and the half-packed
density are packed densities with discontinuities γ = (0, . . . , 0) and (f (0)(0), . . . , f (n)(0)),
respectively. Considering property (iv) in Lemma 1, we are interested in the quantity

D(ϕ, g) :=

∫ p

0

ϕ(x)g(x)dx, (6)

for a periodic function ϕ and a packed density g of Definition 6. It equals the expec-
tation of a periodic function if g is a classical packed density, in which case the discon-
tinuities corresponding to g are γ = (0, . . . , 0). Furthermore, for ϕ defined as in (3),
the quantity D(ϕ, g) is equal to the approximation error of the shifted-LP relaxation of

a simple integer recourse model if g is a half-packed density, f̂p of Definition 5, with
γ = (f (0)(0), . . . , f (n)(0)).
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3.2 Point-symmetric periodic functions

We restrict our attention to point-symmetric periodic functions, a concept we introduce in
Definition 7, since the underlying periodic function that arises when studying the shifted
LP-relaxation for TU integer recourse models is point-symmetric periodic with period
p = 1. However, our results apply to all point-symmetric periodic functions ϕ with
period p > 0.

Definition 7. A periodic function ϕ : R→ R with period p satisfying

ϕ(x) = −ϕ(p− x),

or equivalently

ϕ(x) =
1

2
(ϕ(x)− ϕ(p− x)),

for all x ∈ [0, p] is said to be point-symmetric periodic, or a PSP(p) function.

For a packed density g of Definition 6 and a PSP(p) function ϕ, we are able to derive
an upper bound on D(ϕ, g). The first step we take in obtaining such a bound is to prove
in Lemma 2 that there exists a function gp that is symmetric in the same sense as ϕ and
carries all relevant information of g for computing D(ϕ, g). Moreover, the total variation
of gp on [0, p] does not exceed that of g on [0, p]. Next, in Lemma 3, we obtain bounds
on higher-order derivatives of gp by combining the symmetry of gp with the mean-value
theorem. In Section 3.3, we translate these bounds into a single bound on gp, a process
we refer to as bound propagation.

Lemma 2. Let n ∈ N and p ∈ R with p > 0 be given. Let ϕ : R → R be a PSP(p)
function. For a packed density g of Definition 6, define gp : [0, p]→ R as

gp(x) :=
1

2
(g(x)− g(p− x)), x ∈ [0, p]. (7)

Then,

(i) D(ϕ, g) =

∫ p

0

ϕ(x)gp(x)dx = 2

∫ p/2

0

ϕ(x)gp(x)dx

and for all integers k satisfying 0 ≤ k ≤ n,

(ii) |∆|g(k)
p ([0, p]) ≤ |∆|g(k)([0, p]).

Proof. For property (i), note that it follows from a substitution that∫ p

0

ϕ(x)g(x)dx =

∫ p

0

ϕ(p− x)g(p− x)dx = −
∫ p

0

ϕ(x)g(p− x)dx,

where the latter equality holds since ϕ is a PSP(p) function. Using (iv) in Lemma 1 we

9



have

D(ϕ, g) =

∫ p

0

ϕ(x)g(x)dx

=
1

2

∫ p

0

ϕ(x)g(x)dx+
1

2

∫ p

0

ϕ(x)g(x)dx

=
1

2

∫ p

0

ϕ(x)g(x)− 1

2

∫ p

0

ϕ(x)g(p− x))dx

=

∫ p

0

ϕ(x)gp(x)dx,

and thus the first equality in (i) holds. To prove the second equality in (i), note that∫ p

0

ϕ(x)gp(x)dx =

∫ p/2

0

ϕ(x)gp(x)dx+

∫ p

p/2

ϕ(x)gp(x)dx,

where the second term on the right-hand side can be rewritten as∫ p/2

0

ϕ(p− x)gp(p− x)dx =

∫ p/2

0

ϕ(x)gp(x)dx.

To prove (ii) we make use of standard properties the total variation of functions. Define
l : R→ R as l(x) := g(p− x). We have

|∆|g(k)
p ([0, p]) = |∆|

(
1

2

(
g(k) + (−1)kl(k)

))
([0, p])

=
1

2
|∆|(g(k) + (−1)kl(k))([0, p])

≤ 1

2

(
|∆|g(k)([0, p]) + |∆|l(k)([0, p])

)
=

1

2

(
|∆|g(k)([0, p]) + |∆|g(k)([0, p])

)
= |∆|g(k)([0, p]),

where the second equality holds since for every closed interval I ⊂ R, |∆|(αf)(I) =
|α||∆|f(I), for scalar α and f of bounded variation, and where the inequality follows
from |∆|(f + g)(I) ≤ |∆|f(I) + |∆|g(I) for f and g of bounded variation.

We now state and prove a number of properties of gp that we will use to prove the
results in Sections 3.3 and 3.4. We make a distinction between odd and even-order
derivatives of gp, because they share different properties.

Lemma 3. For a given n ∈ N and p ∈ R with p > 0, let g : [0, p] → R be a packed
density with discontinuities γk := g(k)(0) − g(k)(p), k = 0, . . . , n. Define gp : [0, p] → R
as gp(x) := 1

2 (g(x)− g(p− x)). Then, for all even k, 0 ≤ k ≤ n,

(i) g(k)
p (p/2) = 0,

(ii) g(k)
p (0) = −g(k)

p (p) =
γk
2

, and

(iii)
∣∣∣g(k)
p (x)

∣∣∣ ≤ wk :=
|γk|+ |∆|g(k)([0, p])

4
for all x ∈ [0, p].
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Furthermore, for all odd k, 1 ≤ k ≤ n,

(iv) there exist xk ∈ (0, p/2], such that g
(k)
p (xk) = −γk−1

p , and

(v)
∣∣∣g(k)
p (x)

∣∣∣ ≤ wk :=
|γk−1|
p

+
|∆|g(k)([0, p])

2
for all x ∈ [0, p].

Proof. Note that from the definition of gp,

g(k)
p (x) =

1

2

(
g(k)(x) + (−1)k+1g(k)(p− x)

)
, k = 0, . . . , n, x ∈ R,

so that,

g(k)
p (x) = (−1)k+1g(k)

p (p− x). (8)

Properties (i) and (ii) then follow directly.
To prove property (iv) we make use of the mean-value theorem and property (ii).

Together they imply that there exists a ck ∈ (0, p) such that

g(k)
p (ck) =

−γk−1

2 − γk−1

2

p− 0
= −γk−1

p
.

The existence of xk ∈ (0, p/2] as in property (iv) then follows from the symmetry of
odd-order derivatives, see (8).

We will prove (iii) by contradiction using property (ii) in Lemma 2. Fix an even k and

assume for contradiction that
∣∣∣g(k)
p (t∗)

∣∣∣ > wk for some t∗ ∈ [0, p/2). This implies that

∣∣∣g(k)
p (t∗)

∣∣∣ > |γk|
2
,

because, as a consequence of (ii), |∆|g(k)([0, p]) ≥ |γk|.
Consider the partition P = {0, t∗, p− t∗, p}. Following the notation introduced in

Definition 2, we have for this partition,

V
g
(k)
p

(P ) = 4
∣∣∣g(k)
p (t∗)

∣∣∣± |γk| > 4wk ± |γk| ≥ |∆|g(k)([0, p]),

where the equality is due to equation (8) and property (ii). We thus find a contradiction
with Lemma 2, property (ii).

Property (v) follows in a similar fashion, since by combining (iv) with (8) it is possible
to arrive at a contradiction with property (ii) in Lemma 2 if (v) does not hold.

3.3 Bound propagation

In this section, we use the bounds on g
(k)
p , k = 0, . . . , n, in Lemma 3 to derive a single

tighter bound on gp as defined in (7) for a given packed density g with known disconti-
nuities (γ0, . . . , γn). We use information on the total variation of g and its higher-order
derivatives to bound gp. Clearly, we obtain tighter bounds if we include information on
more higher-order derivatives of g.
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For illustration, suppose that information is available on g and g(1). Given a bound on
|∆|g, property (iii) in Lemma 3 directly yields a uniform bound on |gp(x)| for x ∈ [0, p],

denoted w0. An additional bound on |∆|g(1) yields a bound on |g(1)
p (x)|, denoted w1,

using property (v) in Lemma 3. The latter bound can be used to improve the bound on
|gp(x)| itself, using the concept of bound propagation, which we will now demonstrate.

Let q(x) be such that
∣∣∣g(1)
p (x)

∣∣∣ ≤ q(x) for x ∈ [0, p/2]. Using that gp (p/2) = 0

according to property (i) in Lemma 3, and that

|gp(x)| = |gp(x)| − |gp (p/2)| ≤ |gp(x)− gp (p/2)| ≤
∫ p/2

x

∣∣∣g(1)
p (s)

∣∣∣ ds ≤ ∫ p/2

x

q(s)ds,

we obtain an upper bound on |gp(x)|. Similarly we can extrapolate around x = 0 and use
the fact that gp(0) = γ0

2 to obtain

|gp(x)| ≤ |γ0|
2

+

∫ x

0

q(s)ds.

This means that we can transform an upper bound q(x) on |g(1)
p (x)| for all x ∈ [0, p/2]

into an upper bound on |gp(x)| for every x ∈ [0, p/2]. We formalize this transformation

by defining an operator T that maps the upper bound q on |g(1)
p | into an upper bound

Tq on |gp|. This operator is defined as,

(Tq)(x) := min

{
w0,
|γ0|
2

+

∫ x

0

q(s)ds,

∫ p/2

x

q(s)ds

}
, x ∈ [0, p/2] ,

and includes the uniform upper bound w0 on |gp| as defined in Lemma 3 (iii). From
the analysis above it follows that |gp(x)| ≤ (Tq)(x) for x ∈ [0, p/2]. Note that (Tq)(x)
provides a tighter bound than the bound based on |∆|g alone, which is given by w0.

We generalize this idea to higher-order derivatives by introducing appropriate opera-
tors in Definition 8. The idea is that a bound q on |gnp | may be propogated in dynamic
programming fashion to obtain a bound T · · ·Tq on |gp|. In our case, however, we have
to define two operators T 1 and T 2 since the process of bound propagation is different for
odd and even higher-order derivatives. In Definition 9, we use these operators to define
functions qn0 , n ∈ N, which represent a bound on |gp(x)| based on information on the first
n derivatives of g. Intuitively, including more derivatives should lead to sharper bounds.
This intuition is confirmed in Corollary 1.

Definition 8. For a given p > 0, a function q : [0, p/2] → R, and parameters w > 0
and γ ∈ R, define the operators T 1

w,γ and T 2
w,γ by

(T 1
w,γq)(x) := min

{
w,
|γ|
p

+ max

{∫ x

0

q(s)ds,

∫ p/2

x

q(s)ds

}}
, x ∈ [0, p/2] ,

and

(T 2
w,γq)(x) := min

{
w,
|γ|
2

+

∫ x

0

q(s)ds,

∫ p/2

x

q(s)ds

}
, x ∈ [0, p/2] .

12



Definition 9. Let n ∈ N and p > 0 be given. Let wk > 0 and γk ∈ R, k = 0, . . . , n, be
given constants. Define qnn : [0, p/2]→ R as qnn(x) := wn. For k < n, define qnk : [0, p/2]→
R using backward recursion as

qnk :=

{
T 1
wk,γk−1

qnk+1, if k is odd,

T 2
wk,γk

qnk+1, if k is even.

Before we are ready to prove that qn0 yields a bound on |gp|, we need some elementary
properties of the operators introduced in Definition 8. In Lemma 4, we prove that T j ,
j = 1, 2, are non-negative and monotone operators.

Lemma 4. Let p > 0 be given. Let q, q̃ : [0, p/2]→ R be non-negative functions such that
q̄ ≥ q. Then for all w > 0 and γ ∈ R,

(i) T jw,γq is a non-negative function, j = 1, 2, and

(ii) T jw,γ q̄ ≥ T iw,γq, j = 1, 2.

Proof. Property (i) follows directly from the non-negativity of q. Property (ii) is a direct
consequence of q̄ ≥ q.

Proposition 1. Let n ∈ N and p > 0 be given. Let g : [0, p] → R be a packed density
with discontinuities (γ0, . . . , γn). Define gp : [0, p] → R as gp(x) := 1

2 (g(x) − g(p − x)).
For k = 0, . . . , n, define

wk :=


|γk−1|
p + |∆|g(k)([0,p])

2 , if k is odd,

|γk|+|∆|g(k)([0,p])
4 , if k is even.

,

so that wk denotes a uniform bound on
∣∣∣g(k)
p

∣∣∣. Define qnk , k = 0, . . . , n, as in Definition 9.

Then,

|gp(x)| ≤ qn0 (x), x ∈ [0, p/2] .

Proof. The non-negativity of T j , j = 1, 2, implies that qnk , k = 0, . . . , n, are non-negative
functions. We prove the stronger claim

|g(k)
p (x)| ≤ qnk (x), (9)

for all x ∈ [0, p/2], for k = 0, . . . , n using backward induction.
For k = n, the inequality in (9) follows directly from property (iii) and (iv) in Lemma 3.

For the induction step, assume (9) holds for k = m + 1, with 0 ≤ m < n. We consider
odd and even m separately. For even m, we have to show that∣∣∣g(m)

p (x)
∣∣∣ ≤ (T 2

wm,γmq
n
m+1)(x), x ∈ [0, p/2] .

Since

(T 2
wm,γmq

n
m+1)(x) = min

{
wm,

|γm|
2

+

∫ x

0

qnm+1(s)ds,

∫ p/2

x

qnm+1(s)ds

}
,
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it suffices to show that for all x ∈ [0, p/2],∣∣∣g(m)
p (x)

∣∣∣ ≤ wm, (10)∣∣∣g(m)
p (x)

∣∣∣ ≤ |γm|
2

+

∫ x

0

qnm+1(s)ds, (11)

and ∣∣∣g(m)
p (x)

∣∣∣ ≤ ∫ p/2

x

qnm+1(s)ds. (12)

The induction step for even m then follows by combining (10), (11), and (12).
The inequality in (10) is due to property (iii) in Lemma 3. To prove (11), we use that∣∣∣g(m)

p (x)
∣∣∣− ∣∣∣g(m)

p (0)
∣∣∣ ≤ ∣∣∣g(m)

p (x)− g(m)
p (0)

∣∣∣ =

∣∣∣∣∫ x

0

g(m+1)
p (s)ds

∣∣∣∣ ,
by the triangle inequality. Using the induction hypothesis and the fact that qnm+1 is a
non-negative function, we obtain∣∣∣g(m)

p (x)
∣∣∣− ∣∣∣g(m)

p (0)
∣∣∣ ≤ ∫ x

0

qnm+1(s)ds.

Then, (11) follows by inserting g
(m)
p (0) = γm

2 by Lemma 3 (ii), and rearranging terms.
The inequality in (12) can be proved in a similar manner as (11) by applying the trian-

gle inequality to
∣∣∣g(m)
p (p/2)− g(m)

p (x)
∣∣∣. We conclude that the induction step holds for

even m.
For odd m, we have to show that∣∣∣g(m)

p (x)
∣∣∣ ≤ (T 1

wm,γm−1
qnm+1)(x), x ∈ [0, p/2] .

By definition,

(T 1
wm,γm−1

qnm+1)(x) = min

{
wm,

|γm−1|
p

+ max

{∫ x

0

qnm+1(s)ds,

∫ p/2

x

qnm+1(s)ds

}}
,

so that it suffices to show for all x ∈ [0, p/2] that∣∣∣g(m)
p (x)

∣∣∣ ≤ wm, (13)

and ∣∣∣g(m)
p (x)

∣∣∣ ≤ |γm−1|
p

+ max

{∫ x

0

qnm+1(s)ds,

∫ p/2

x

qnm+1(s)ds

}
. (14)

The inequality in (13) follows directly from property (v) in Lemma 3. To prove (14)
we make use of in Lemma 3 (iv), which states that there exists xm ∈ (0, p/2] such that

g
(m)
p (xm) = −γm−1

p . By the triangle inequality,∣∣∣g(m)
p (x)

∣∣∣− ∣∣∣g(m)
p (xm)

∣∣∣ ≤ ∣∣∣g(m)
p (x)− g(m)

p (xm)
∣∣∣ =

∣∣∣∣∫ x

xm

g(m+1)
p (s)ds

∣∣∣∣ .
14



Together with the induction hypothesis, this yields∣∣∣g(m)
p (x)

∣∣∣− ∣∣∣g(m)
p (xm)

∣∣∣ ≤ ∣∣∣∣∫ x

xm

qnm+1(s)ds

∣∣∣∣ .
To arrive at (14), we make the following observation∣∣∣∣∫ x

xm

qnm+1(s)ds

∣∣∣∣ = max

{∫ x

xm

qnm+1(s)ds,

∫ xm

x

qnm+1(s)ds

}
≤ max

{∫ x

0

qnm+1(s)ds,

∫ p/2

x

qnm+1(s)ds

}
,

where the inequality holds since xm ∈ (0, p/2] and qnm+1 is non-negative. This completes
the induction step for odd m, and the proof of (9).

We now present a corollary of Lemma 4, which states the intuitive result that the
bounds on gp become sharper if more higher-order derivatives are included.

Corollary 1. Let n ∈ N and p > 0 be given. Let γk and wk > 0, k = 0, . . . , n, be given
constants. Define ql0, l = 0, . . . , n, as in Definition 9. Then,

q0
0 ≥ q1

0 ≥ · · · ≥ qn0 .

Proof. Fix an l ∈ {1, . . . , n}. We will use backward induction to prove that ql−1
k ≥ qlk for

k = 0, . . . , l − 1. The claim then follows by setting k = 0.
It follows directly from the definition of qnk that ql−1

l−1 ≥ qll−1. For the induction step,

suppose that ql−1
k ≥ qlk for some k, 0 < k ≤ l− 1. It follows from the monotonicity of T j ,

j = 1, 2, that ql−1
k−1 ≥ qlk−1, completing the proof.

3.4 Error bounds

We are now ready to state the main results of this section. In Theorem 2, we formulate an
improved bound on the expectation of PSP(p) functions and Theorem 3 states the bound
on the expectation of half-periodic functions where the underlying periodic function is
PSP(p).

Theorem 2. Let n ∈ N and p > 0 be given. Let ϕ : R→ R be a PSP(p) function and let
B = (B0, . . . , Bn) and C = (C0, . . . , Cn) be positive constants. Then, for Mn defined as

Mn(ϕ,B,C) := sup
f∈Fn

{
|Ef [ϕ(ω)]| : |∆|f (k) ≤ Bk, ||f (k)||∞ ≤ Ck, for k = 0, . . . , n

}
,

there holds

Mn(ϕ,B,C) ≤ 2

∫ p/2

0

|ϕ(x)| qn0 (x)dx,

where qn0 is defined as in Definition 9, with γk = 0, k = 0, . . . , n, and

wk =

{
Bk

2 , if k is odd,

Bk

4 , if k is even.
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Proof. For a given PSP(p) function ϕ and pdf f ∈ Fn, we know from Lemma 1 that

|Ef [ϕ(ω)]| =
∣∣∣∣∫ p

0

ϕ(x)fp(x)dx

∣∣∣∣ ,
where fp denotes the classical packed density corresponding to f . The function fp is a
packed density with discontinuities γ = (0, . . . , 0). Lemma 2 informs us that

|Ef [ϕ(ω)]| = 2

∣∣∣∣∣
∫ p/2

0

ϕ(x)gp(x)dx

∣∣∣∣∣ ,
where gp(x) = 1

2 (fp(x)− fp(p− x)). This implies

|Ef [ϕ(ω)]| ≤ 2

∫ p/2

0

|ϕ(x)||gp(x)|dx.

By Lemma 1, property (iii), we know that Bk is an upper bound on |∆|fkp ([0, p]), k =

0, . . . , n. Combining Proposition 1 with the monotonicity of the operators T j , j = 1, 2,
yields that qn0 is an upper bound on |gp|, completing the proof.

Remark 5. Note that the bound presented in Theorem 2 is independent of C. This is
because the discontinuities of the classical packed density are zero.

Theorem 3. Let n ∈ N and p > 0 be given. Let ψ : R → R be a half-periodic function
defined as

ψ(x) :=

{
0, x < 0,

ϕ(x), x ≥ 0,

where ϕ : R → R is a PSP(p) function. Let B = (B0, . . . , Bn) and C = (C0, . . . , Cn) be
positive constants. Then, for Mn defined as

Mn(ψ,B,C) := sup
f∈Fn

{
|Ef [ψ(ω)]| : |∆|f (k) ≤ Bk, ||f (k)||∞ ≤ Ck, for k = 0, . . . , n

}
,

there holds

Mn(ψ,B,C) ≤ 2

∫ p/2

0

|ϕ(x)| qn0 (x)dx,

where qn0 is defined as in Definition 9, with γk = Ck, k = 0, . . . , n, and

wk =

{
Ck−1

p + Bk

2 , if k is odd,

Bk

4 , if k is even.

Proof. For a given half-periodic function ψ with underlying PSP(p) function ϕ and pdf
f ∈ Fn, we know from Lemma 1 that

|Ef [ψ(ω)]| =
∣∣∣∣∫ p

0

ϕ(x)f̂p(x)dx

∣∣∣∣ ,
16



where f̂p denotes the half-packed density corresponding to f . The function f̂p is a packed
density with discontinuities γ = (f (0)(0), . . . , f (n)(0)). Lemma 2 informs us that

|Ef [ψ(ω)]| = 2

∣∣∣∣∣
∫ p/2

0

ϕ(x)gp(x)dx

∣∣∣∣∣ ,
where gp(x) = 1

2 (f̂p(x)− f̂p(p− x)). This implies

|Ef [ψ(ω)]| ≤ 2

∫ p/2

0

|ϕ(x)||gp(x)|dx.

By Lemma 1, property (iii), we know that Bk−|f (k)(0)| is an upper bound on |∆|f̂kp ([0, p]),

k = 0, . . . , n. Furthermore, |γk| = |f (k)(0)| ≤ Ck. Combining Proposition 1 with the
monotonicity of the operators T j , j = 1, 2, yields that qn0 is an upper bound on |gp|, and
the result follows.

4 Applications and examples

In this section, we apply the results in Section 3 to specific functions. As in Section 3, we
make a distinction between periodic and half-periodic functions. First, we apply Theo-
rem 2 to a particular PSP(p) function. Second, we derive an improved error bound for the
shifted LP-relaxation approximation of one-dimensional SIR models. Since the underlying
difference function is half-periodic, we can use Theorem 3 to derive such a bound. This
error bound can be generalized to higher-dimensional SIR models. Finally, we conduct
numerical experiments to compare the performance of the error bound by Romeijnders
et al. [13] and the improved bound derived in this section.

4.1 Point symmetric periodic functions

Here, we derive a bound on the expectation of the underlying periodic function ϕ for the
shifted LP-relaxation for SIR models, defined as ϕ(x) := x − dx − 1

2e. Note that ϕ is a
PSP(1) function and that |ϕ(x)| = x for x ∈ [0, 1

2 ]. In the notation of Theorem 2, take
n = 1, which is to say that we make use of the total variation of the underlying pdf and
its first derivative. Furthermore, q1

1(x) = B1

2 and

q1
0(x) = min

{
B1

2
x,
B0

4
,
B1

2

(
1

2
− x
)}

Applying Theorem 2 yields

M1(ϕ,B0, B1, C0, C1) ≤
∫ 1

2

0

xmin

{
B1x,

B0

2
, B1

(
1

2
− x
)}

dx.

Using this, we find that for any f ∈ F1

∣∣∣Ef [ϕ(ω)]
∣∣∣ ≤ k(|∆|f, |∆|f ′) :=


|∆|f
16

(
1− |∆|f

|∆|f ′

)
, |∆|f

|∆|f ′ <
1
2 ,

|∆|f ′
64 , |∆|f

|∆|f ′ ≥
1
2 .
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Since this bound holds for all f ∈ F1, it follows that if ω has pdf f ∈ F1, then

sup
z∈R

Eω[ϕ(ω − z)] ≤ k(|∆|f, |∆|f ′).

This result is an improvement of the bound by Romeijnders et al. [13], who showed that

∣∣∣Ef [ϕ(ω)]
∣∣∣ ≤ 1

2
h(|∆|f) =

{ |∆|f
16 , 0 < |∆|f ≤ 4,

1
2 −

1
|∆|f , |∆|f ≥ 4.

Note that the improvement is large if |∆|f ′ is small relative to |∆|f . We now apply this
result to a range of specific pdf’s.

Example 1. Let f denote the pdf of a normally distributed random variable ω with
variance σ2. Then,

|∆|f = σ−1
√

2/π, and |∆|f ′ = σ−2

√
8

πe
.

Observe that the ratio

|∆|f
|∆|f ′

= σ

√
e

2

increases linearly in σ. This implies that the improvement over the original total variation
bound is unbounded and increases with σ. We have

∣∣∣Ef [ϕ(ω)]
∣∣∣ ≤ k(|∆|f, |∆|f ′) =


1
16

√
2
π

1
σ

(
1−

√
e

2 σ
)
, if σ < 1√

e
,

1
32

√
2
πe

1
σ2 , if σ ≥ 1√

e
.

Figure 2 shows the true value of supz∈R{Eω[ϕ(ω−z)]}, the upper bound 1
2h(|∆|f) derived

by Romeijnders et al. [13], and the upper bound k(|∆|f, |∆|f ′) based on M1. Moreover,
we include the upper bound based on M2. The latter bound is tractable, but an analytical
expression is cumbersome and does not yield further insights and is therefore omitted.
Note that the bounds based on M1 and M2 provide a tighter bound compared to 1

2h(|∆|f)
for large values of σ. ♦
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Figure 2: The true value of supz∈R{Eω[ϕ(ω − z)]} (solid), and the upper bounds based
on [13] (dotted), M1 (dashed), and M2 (dash-dotted) as a function of σ, where ω follows
a normal distribution with variance σ2.

Note that our results only apply to continuously differentiable pdf, nevertheless, for
continuous pdf f that are not continuously differentiable we can still apply our results
by considering the right derivative of f , denoted f ′+, instead of the derivative of f . The
reason for this lies in the fact that there exists a continuously differentiable approximation
f̃ of f such that |∆|f = |∆|f̃ , |∆|f ′+ = |∆|f̃ ′, and Ef [ϕ(ω − z)] is arbitrarily close to
Ef̃ [ϕ(ω − z)]. We illustrate this in the next example.

Example 2. Suppose that ω follows a triangular distribution with support [a, b] and
mode m, a < m < b. See Figure 3 for illustration.

Figure 3: The probability density function of a random variable following a triangular
distribution with support [4, 6] and mode 5 (solid); and support [1, 5] and mode 2 (dashed).
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Denote the pdf of ω by f . Write d := b− a and note that f(m) = 2
d , so that,

|∆|f =
4

d
,

furthermore,

|∆|f ′+ =
4

(m− a)(b−m)
.

This leads to∣∣∣Eω[ϕ(ω)]
∣∣∣ ≤ { 1

4d

(
1− (m−a)(b−m)

d

)
, if (m− a)(b−m) < 1

2d,
1

16(m−a)(b−m) , if (m− a)(b−m) ≥ 1
2d.

Note that |∆|f is independent of the mode m, however, changing m does affect |∆|f ′+. In
fact, for given a and b, |∆|f ′+ is minimized by m = 1

2 (a+ b). Hence, as the mode is closer
to the midpoint of the support of ω, |∆|f ′+ is smaller and we obtain tighter bounds. ♦

4.2 Error bound shifted-LP relaxation

In this section, we consider the underlying difference function ψ, defined in (4), for the
shifted LP-relaxation for SIR models. Recall that bounds on the expectation of ψ can be
used directly to derive error bounds for the shifted LP-relaxation for SIR models.

We apply Theorem 3 with n = 1 to derive a such a bound. We have ϕ(x) = x−
⌈
x− 1

2

⌉
.

Like in Section 4.1, |ϕ(x)| = x for all x ∈ [0, 1
2 ]. Note that q1

1(x) = C0 + B1

2 =: D and
that

q1
0(x) = min

{
B0

4
,
C0

2
+Dx,D

(
1

2
− x
)}

.

Hence, by Theorem 3,

M1(ψ,B0, B1, C0, C1) ≤
∫ 1

2

0

xmin

{
B0

2
, C0 +Dx,D

(
1

2
− x
)}

dx,

where D = 2C0 +B1. Note that for any pdf f ,

||f ||∞ ≤
|∆|f

2
,

where equality holds if f is unimodal. For this reason, we take C0 = B0

2 , so that the
resulting bound holds for all pdf f ∈ F1. For unimodal pdf’s the resulting bound is the
tightest bound we can provide, whereas tighter bounds can be derived for non-unimodal
pdf. Simple computations yield

M1(ψ,B0, B1,
B0

2
, C1) ≤ B0

16
S(B0, B1),

where

S(x, y) :=

(
1− x (2x+ 3y)

3 (x+ y)
2

)
∈ (1/3, 1),
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for positive x and y. We thus have that for any f ∈ F1,∣∣∣Ef [ψ(ω)]
∣∣∣ ≤ |∆|f

16
S(|∆|f, |∆|f ′).

The original bound by Romeijnders et al. [13] is given by |∆|f16 , so S(|∆|f, |∆|f ′) represents

the improvement over their results. Note that S(|∆|f, |∆|f ′) → 1
3 as |∆|f

′

|∆|f → 0, which

is to say that the improvement factor converges to three. We return to this fact in the
following example, where we apply our results to a normally distributed random variable.

Example 3. We numerically evaluate ||Q̂−Q||∞, where Q̂ denotes the shifted-LP relax-
ation by Romeijnders et al. [13] as in Definition 1, in the one-dimensional SIR case where
ω follows a normal distribution with arbitrary mean and variance σ2, for σ ∈ [0.2, 4]. We
compare the actual error to the error bound based on [13] and the improved error bounds
based on M1 and M2. We omit the analytical expression for the bound based on M2,
which is tractable but cumbersome.

Denote the pdf of ω by f . To compute the (improved) error bounds, we make use of
the expressions for |∆|f and |∆|f ′ found in Example 1. It follows from these expressions
that

|∆|f ′

|∆|f
→ 0

as σ → ∞, which implies that the improvement factor over the original total variation
bound converges to three for large values of σ. Figure 4 shows the results of this numerical
experiment. Note that the improvement over the original error bound increases with σ. ♦

Figure 4: The true value of ||Q̂−Q||∞ (solid), and the upper bounds based on [13] (dot-
ted), M1 (dashed), and M2 (dash-dotted) in the one-dimensional SIR case as a function
of σ, where ω follows a normal distribution with variance σ2.
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5 Conclusion

We consider existing convex approximations for two-stage mixed-integer recourse models.
We construct a hierarchy of bounds on the expectation of periodic and half-periodic
functions using total variations of higher-order derivatives of the underlying probability
density function. We use these results to derive improved error bounds for the shifted
LP-relaxation of simple integer recourse models. Moreover, the results presented here
may be used to improve error bounds of convex approximations for general mixed-integer
recourse model approximations.

There are multiple directions for future research. One extension is to generalize our
results to a to a higher-dimensional setting. A first step in this direction may be to
consider totally unimodular integer recourse models. Another avenue is to apply the
results to a particular application of integer recourse models. Finally, our results may be
extended to a larger class of periodic functions, which may be useful for other types of
convex approximations.
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