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Abstract

Motivated by yield curve modeling, we solve dynamic mean-variance efficiency prob-
lems in both discrete and continuous time. Our solution applies to both complete
and incomplete markets and we do not require the existence of a riskless asset, which
is relevant for yield curve modeling. Stochastic market parameters are incorporated
using a vector of state variables. In particular for markets with deterministic param-
eters, we provide explicit solutions. In such markets, where no riskless asset need be
present, we describe term-independent uniformly mean-variance efficient investment
strategies. For constant parameters we show the existence of a unique, symmetrically
distributed, trend stationary, uniformly MV efficient strategy.
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1 Introduction

Usually mean-variance (MV) analysis is applied for solving portfolio selection problems.

The results on dynamic MV analysis presented here, however, are motivated by their

application in the field of yield curve modeling. In fact, the price process of a riskless

bond maturing at date T represents a dynamic MV efficient investment strategy, since the

variance of the portfolio value at time T equals zero. It is therefore interesting to use MV

properties of an underlying incomplete risky market to model the term structure of interest

rates. In particular, Bekker and Bouwman (2009b) use risky assets as factors, and exploit

the dynamic MV properties of the underlying risky market to formulate an arbitrage-free

model of the term structure of interest rates. In this approach the short rate is driven by

capital market returns. It is therefore essential the underlying market is modeled without

using a bank account.

We found that surprisingly little is known about dynamic MV efficient strategies in

continuous time if there is no short rate. Even in markets with deterministic or constant

parameters, the generalization of single-period MV results to a dynamic continuous-time

framework has been given only in the presence of a riskless asset. The absence of a short

rate complicates the MV analysis. That is, in a deterministic framework, buy-and-hold

investments in only two MV efficient strategies span all MV efficient strategies. In the

presence of a short rate, a buy-and-hold investment in the bank account would be one of

them.

Furthermore, Bekker and Bouwman (2009a) describe the value processes of stochastic

discount factors as price processes in dual markets. Even when the primal markets have

bank accounts, these dual markets do not have (dual versions) of bank accounts. Yet the

dynamic MV frontier of Section 3 can be applied to derive dynamic generalizations of the

Hansen-Jagannathan (1991) bounds.

Of course, the dynamic mean-variance results are relevant for portfolio theory as well,

which holds in particular for cases without a short rate. Early work in portfolio theory

was strongly influenced by the single-period Mean-Variance (MV) analysis of Markowitz

(1952, 1959).1 For example, MV analysis lead to the the subsequent development of the

Capital Asset Pricing Model (CAPM) by Sharpe (1964), Lintner (1965a,b) and Mossin

(1966). Recently, MV analysis has been generalized to a multiperiod context by Li and Ng

(2000) and Zhou and Li (2000) among others.

Multiperiod portfolio selection was pioneered by Merton (1969, 1971) in a continuous-

time expected utility framework. Merton (1971) solves the multiperiod consumption-

1An analytical derivation for the single period MV problem can be found in Merton (1972).



investment problem in continuous time by using dynamic programming. Over the past

decades, this work has been generalized substantially.2

The dynamic MV portfolio selection problem, as considered in this paper, is closely re-

lated to the expected utility approach. It is well-known that optimizing expected quadratic

utility yields a solution to the MV problem, see e.g. Xia (2005). However, quadratic util-

ity generates a negative marginal utility for relatively large levels of wealth and thereby

violates the classical assumption of strict monotonicity of the utility function. Therefore,

the results in the expected utility literature are not directly applicable to the multiperiod

MV problem. In fact, only recently the literature describes explicitly general results on

MV frontiers.

In discrete time, and for a market with deterministic market parameters, Li and Ng

(2000) solved the multiperiod MV problem. Their approach is characterized by solving

an auxiliary optimization problem, using dynamic programming, to obtain the solution to

the MV portfolio selection problem. Leippold et al. (2004) used an alternative, geometric

approach to describe the solution.

In continuous time, the MV portfolio selection has almost exclusively been studied in

complete markets. Zhou and Li (2000) follow an approach analogous to Li and Ng (2000)

to solve the MV problem for a complete market with deterministic market parameters.

Their work is subsequently generalized to markets with stochastic parameters by Lim and

Zhou (2002), and Bielecki et al. (2005). An early example of MV portfolio selection in

continuous time, using a martingale approach, is given by Bajeux-Besnainou and Portait

(1998).

It is remarkable to observe that little work has been done on MV portfolio selection

in an incomplete market continuous-time setting. Lim (2004) and Basak and Chabakauri

(2008) do consider MV portfolio selection in an incomplete market with stochastic market

parameters, but still assumes the presence of a short rate. We are unaware of results on

the continuous-time generalization of the MV portfolio selection problem for markets with

only risky assets.

A related body of literature investigates the MV hedging of unattainable claims. In MV

hedging, an unattainable claim is hedged such that the expected quadratic hedging errors

are minimized. This problem is closely related to MV portfolio selection, because the MV

portfolio selection problem corresponds to MV hedging of a constant claim given a fixed

initial investment (see e.g. Lim (2004)). The MV hedging problem is studied in discrete

2Important generalizations are given by Karatzas et al. (1986), Karatzas et al. (1987) and Cox and
Huang (1989). Generalizations to the incomplete market case are given by He and Pearson (1991), Karatzas
et al. (1991) and Cvitanić and Karatzas (1992). See Schachermayer (2002), Korn (1997) and Karatzas
and Shreve (1998) for an overview.
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time by Schweizer (1995), Bertsimas et al. (2001) and Černý (2004) and in continuous time

by Duffie and Richardson (1991), Schäl (1994), Gouriéroux et al. (1998) and Bertsimas et

al. (2001).3

Despite the fact that much work has been done on multiperiod MV analysis so far,

a uniform treatment of MV portfolio selection for a general incomplete market in both

discrete and continuous time seems to be missing. This paper tries to fill this gap by solving

the dynamic MV problem for a general incomplete market in both discrete and continuous

time. We consider an incomplete market where the joint dynamics of prices and a vector

of state variables are assumed Markov. We use dynamic programming to obtain the MV

solution in a uniform way that applies to markets with or without a riskless asset. Our

solution is expressed as an explicit function of the three MV parameters describing the MV

frontier for a particular horizon.4 For these MV parameters, conditions are derived in the

form of a recursive system of PDE’s.

As a result we find, similar to Merton’s (1973) M+2 mutual fund theorem, that all MV

efficient strategies reduce to investments in a set of at most M + 2 mutual funds. When

the market parameters are deterministic, so that M = 0, there are two mutual funds

which are instantaneously MV efficient. For this case, which can be considered the most

straightforward generalization of the single-period Markowitz market, the paper provides

explicit solutions. These solutions show that the two instantaneous MV efficient mutual

funds can also be formulated as two uniformly MV efficient funds, which are dynamically

MV efficient for any horizon. So, independent of the investment horizon, all MV efficient

strategies invest buy-and-hold in only two dynamically MV efficient strategies. For constant

parameters we show the existence of a unique, symmetrically distributed, trend stationary,

uniformly MV efficient strategy.

The outline of this paper is as follows. Section 2 sets up the framework and discusses

some general results on MV portfolio selection. Section 3 derives the solution to the

dynamic MV portfolio selection problem in continuous time. The discrete-time solution is

derived analogously in Appendix A.1. Specific results regarding a market with deterministic

parameters are highlighted and a simple example with stochastic market parameters is

illustrated in continuous time. Section 4 concludes.

3See Schweizer (2001) for an overview.
4Notice the multi-period frontier can also be considered as a single-period frontier with an infinite

number of assets, given by self-financing strategies, as considered by Hansen and Richard (1987).
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2 The Framework and Single-Period Results

2.1 The market

Consider a market with N assets and frictionless trading at fixed trading times given by the

set T . In particular, we discriminate between the discrete time case and continuous time.

The probability structure and flow of information is described by the filtered probability

space
(
Ω,F , {Ft}t∈T , P

)
. The N×1-dimensional asset price process St is a positive process

adapted to the filtration Ft and is affected by an M × 1-dimensional adapted process of

state variables Zt. The joint (N +M)× 1 vector process (S′t,Z
′
t)
′ is assumed Markov with

finite second moment.5

In continuous time, that is T = [0, T ], the dynamics of the asset prices and state

variables are given by the following system of stochastic differential equations

dSt = diag(St) {µS (t,Zt) dt+ σS (t,Zt) dWt} ,

dZt = µZ (t,Zt) dt+ σZ (t,Zt) dWt,

where Wt is L-dimensional standard Brownian motion adapted to Ft and the functions

µS , µZ , σS and σZ are assumed sufficiently regular for the system to have a unique strong

solution with a finite second moment.6 Denote the instantaneous covariance matrices as

ΣS = σSσS
′ : N ×N , ΣZ = σZσZ

′ : M ×M, and ΣSZ = σSσZ
′ : N ×M .

Portfolios are described by an adapted N -dimensional weight process φt, where each

component represents the holdings in the corresponding asset denoted in monetary units.

The portfolio value is given by Vφ,t = ı′φt, where ı is a vector of ones. Attention is

restricted to the set of admissible portfolios Φ that satisfy the following two conditions.

First, admissible portfolios are self-financing, so that the value dynamics for an admissible

portfolio φt is given by

dVφ,t = φ′t {µS (t,Zt) dt+ σS (t,Zt) dWt} . (1)

Secondly, they satisfy E
∫ T

0
φ′tφt dt <∞, which ensures E

(
V 2
φ,t

)
<∞, for t ∈ [0, T ].

5We use boldface for vectors and matrices.
6For conditions see Duffie (2001) and references therein.
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2.2 The frontier

We denote portfolio returns by Rφ(t;T ) = Vφ,T/Vφ,t and their conditional moments by

mφ = mφ(t, z;T ) = E (Rφ(t;T ) | Zt = z) ,

s2
φ = s2

φ(t, z;T ) = E
(
R2
φ(t;T ) | Zt = z

)
,

v2
φ = s2

φ −m2
φ.

The MV-frontier over a period [t, T ] can be considered a single-period frontier where assets

are given by strategies. The frontier where the minimal value of either s2
φ or v2

φ is expressed

as function of mφ = m is given by

s2(m) = min
φ

(
s2
φ(t, z;T ) | mφ(t, z;T ) = m

)
,

= s2
LSR +

(m−mLSR)2

F 2
= m2 + v2

GMV +
(m−mGMV)2

Γ2
,

where mLSR and s2
LSR are the first two moments of the least square return (LSR) portfolio

that minimizes s2
φ, and mGMV and s2

GMV are the first two moments of the global minimum

variance (GMV) portfolio that minimizes v2
φ. The scalars F and Γ do not depend on m

and satisfy Γ2 = F 2/(1− F 2), and

mGMV =
mLSR

1− F 2
, v2

GMV = s2
LSR −

m2
LSR

1− F 2
. (2)

2.3 MV efficient strategies and the value function

The MV portfolio selection problem is equivalent to the problem of MV hedging a constant

claim C given a fixed initial investment (see e.g. Lim (2004)). This can be seen by

considering the value function of this MV hedging problem, which is given by

J(t, z, x) = min
φ

E{(Vφ,T − C)2 | Zt = z, Vφ,t = x} (3)

= min
φ

E{(xRφ(t;T )− C)2 | Zt = z}

= min
φ

{
x2s2

φ(t, z;T )− 2xmφ(t, z;T )C + C2
}
,

Clearly the minimum is found for a MV efficient strategy. So, for F > 0 we have

J(t, z, x) = min
m

[
x2

{
s2

LSR(t, z;T ) +
{m−mLSR(t, z;T )}2

F 2(t, z;T )

}
− 2xmC + C2

]
,
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and the minimum is found for m = mLSR(t, z;T ) + F 2(t, z;T )C/x. Therefore, we have

J(t, z, x) =

(
x

−C

)′(
s2

LSR(t, z;T ) mLSR(t, z;T )

mLSR(t, z;T ) 1− F 2(t, z;T )

)(
x

−C

)
. (4)

Let he minimum risk (MR) strategy be defined as the strategy that minimizes the value

function over the initial investment, where we assume C 6= 0,

Q(t, z) = min
x,φ

E{(Vφ,T − C)2 | Zt = z, Vφ,t = x}

= min
x,φ
{x2s2

φ(t, z;T )− 2xmφ(t, z;T )C + C2}

= min
φ
C2

{
1−

m2
φ(t, z;T )

s2
φ(t, z;T )

}

= C2

{
1− m2

MR(t, z;T )

s2
MR(t, z;T )

}
,

where x is found equal to x = CmMR/s
2
MR. So MR also maximizes m/s or m/v. Alterna-

tively, by minimizing (4), the solution is found for

x = CmLSR/s
2
LSR,

Q(t, z) = C2

{
1− F 2(t, z;T )− m2

LSR(t, z;T )

s2
LSR(t, z;T )

}
.

Consequently, we find

mMR

s2
MR

=
mLSR

s2
LSR

, F 2 =
m2

MR

s2
MR

− m2
LSR

s2
LSR

, mMR = mLSR +
s2

LSR

mLSR

F 2.

As is well-known, two MV efficient returns span the MV frontier (if F = 0 a single

return suffices). In particular the MV efficient portfolio that minimizes the value function

(3) is given by

Vφ,T = xRφ =
mMR

s2
MR

CRMR +

(
x− mMR

s2
MR

C

)
RLSR, (5)

which follows from the optimality of RMR and RLSR.7

7That is, consider general portfolio values, with a starting value equal to x, given by Vφ,T + ε, where
Vφ,T equals (5) and ε is the value at time T of a zero-cost portfolio. The optimality of RMR and RLSR

implies E
{(

RMR − s2
MR/mMR

)
R
}

= 0, and E {RLSR(R−RLSR)} = 0, respectively, for arbitrary returns R.
Consequently, E(RLSRε) = 0 and E(RMRε) = E(ε)s2

MR/mMR, and E(Vφ,T +ε−C)2 = E(Vφ,T −C)2 +E(ε2).
So (3) is minimized by (5).
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2.4 The instantaneous frontier

If the mean and variance of the instantaneous return of the portfolio are given by

mφ(t, z, t+ dt) = 1 + µφ(t, z) dt,

v2
φ(t, z, t+ dt) = σ2

φ(t, z) dt,

respectively, then the instantaneous MV-frontier can be represented as

min
φ

(
σ2
φ(t, z) | µφ(t, z) = µ

)
= α2(t, z) +

(µ− β(t, z))2

γ2(t, z)
,

with instantaneous MV parameters α, β and γ.

If there is no riskless asset, we assume ΣS is nonsingular. In case there is a bank

account, we assume nonsingularity of the (N − 1)× (N − 1)-matrix Σ22(t, z), where

ΣS(t, z) =

(
0 0′

0 Σ22(t, z)

)
.

To cover both cases we assume the existence of the following inverse for all t and z(
H h

h′ h22

)
=

(
H(t, z) h(t, z)

h(t, z)′ h22(t, z)

)
=

(
ΣS(t, z) ı

ı′ 0

)−1

. (6)

For the two cases, i.e. when all assets are risky and when there is a riskless asset, we find

h =
Σ−1

S ı

ı′Σ−1
S ı

, H = Σ−1
S −

Σ−1
S ıı′Σ−1

S

ı′Σ−1
S ı

,

(
h22 =

1

ı′Σ−1
S ı

)
,

and

h =

(
1

0

)
, H =

(
ı′Σ−1

22 ı −ı′Σ−1
22

−Σ−1
22 ı Σ−1

22

)
, (h22 = 0),

respectively. Notice that h′ı = 1, Hı = 0, HΣSh = 0 and HΣSH = H .

Whether or not there is a riskless asset, the instantaneous MV-parameters are now
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given by

α2 = α2(t, z) = h′ΣSh, (7)

β = β(t, z) = h′µS , (8)

γ2 = γ2(t, z) = µ′SHµS . (9)

The instantaneous MV efficient MR, GMV and LSR portfolios, with starting value 1, are

given by

φMR(t, z; t+ dt) = φGMV(t, z; t+ dt) = h, (10)

φLSR(t, z; t+ dt) = h−HµS . (11)

3 Dynamic MV analysis in continuous time

To obtain the solution to the MV portfolio selection problem, we solve the following MV

hedging problem

min
φ

E
{

(Vφ,T − C)2 | Z0 = z0, Vφ,0 = 1
}
, (12)

where C is a nonrandom scalar. We use the Bellman principle of optimality to obtain the

solution to (12). In continuous time, the Bellman principle condenses to an optimality

condition in the form of the well-known Hamilton-Jacobi-Bellman (HJB) equation. See

Fleming and Rishel (1975), Øksendal (2003), Bjork (2004) or Chang (2004) for a discussion

of dynamic programming in continuous time and the use of HJB equations.

The value function is given by (4) and its derivatives with respect to vectors a and b,

say, are denoted as

Ja =
∂J

∂a
, and Jab′ =

∂2J

∂a∂b′
.

Let

A(t, z, x) = Jt + µ′ZJz + tr {ΣZJzz′} /2,

B(t, z, x) = min
φt

[φ′t {µSJx +ΣSZJzx}+ φ′tΣSφtJxx/2 | ı′φt = x] ,

then for all x ∈ R, z ∈ RM and t ∈ (0, T ], the value function satisfies the following HJB

8



equation:

A(t, z, x) +B(t, z, x) = 0, (13)

J(T,z, x) = (x− C)2 . (14)

Theorem 1. The value function (3) is of the form (4) and the dynamic MV parameters

s2
LSR, mLSR and F 2: [0, T ]× RM 7→ R satisfy (with the arguments suppressed)

∂s2
LSR

∂t
+ µ′Z

∂S
2
LSR

∂z
+

1

2
tr

(
ΣZ

∂2s2
LSR

∂z∂z′

)
+

s2
LSR

{
h′ΣSh+ 2h′

(
µS +ΣSZ

∂ log(s2
LSR)

∂z

)
−(

µS +ΣSZ

∂ log(s2
LSR)

∂z

)′
H

(
µS +ΣSZ

∂ log(s2
LSR)

∂z

)}
= 0, (15)

∂mLSR

∂t
+ µ′Z

∂mLSR

∂z
+

1

2
tr

(
ΣZ

∂2mLSR

∂z∂z′

)
+

mLSR

{
h′
(
µS +ΣSZ

∂ log(mLSR)

∂z

)
−(

µS +ΣSZ

∂ log(s2
LSR)

∂z

)′
H

(
µS +ΣSZ

∂ log(mLSR)

∂z

)}
= 0, (16)

∂F 2

∂t
+ µ′Z

∂F 2

∂z
+

1

2
tr

(
ΣZ

∂2F 2

∂z∂z′

)
+

m2
LSR

s2
LSR

(
µS +ΣSZ

∂ log(mLSR)

∂z

)′
H

(
µS +ΣSZ

∂ log(mLSR)

∂z

)
= 0, (17)

with boundary conditions mLSR(T,z;T ) = s2
LSR(T,z;T ) = 1− F 2(T,z;T ) = 1.

The portfolio weights φt for the strategy (1) that minimizes (12) are given by

φt =

{
h+HΣSZ

∂ log(mLSR/s
2
LSR)

∂z

}
C
mLSR

s2
LSR

+(
h−HµS −HΣSZ

∂ log s2
LSR

∂z

)(
Vφ,t − C

mLSR

s2
LSR

)
. (18)

The proof is given in Appendix A.2. Notice, in a complete market a riskless bond amounts

to an investment in a term-T global minimum variance strategy with variance v2
GMV = 0.

So, using (2), a term-T bond price that pays BT = 1 at time T has value Bt = m−1
GMV =

mLSR/s
2
LSR. Consequently, the term CmLSR/s

2
LSR can be interpreted as the present value of

the claim that has value C at time T . It is the difference between the portfolio value and

the present value of the claim that drives the mean reversion of MV efficient processes.

9



The dynamic MV portfolio selection problem in discrete time can be solved analogously

and the solution is given in Appendix A.1. For a discussion of the theorem we will first

focus on the deterministic case, where there are no state variables. Subsequently, the effect

of the state variables will be considered.

3.1 The deterministic case

In the deterministic case, where there are no state variables, we can use the definitions of

α, β, and γ in (7), (8), and (9), to reformulate the conditions (15), (16), and (17) as

ds2
LSR

dt
= −s2

LSR(2β + α2 − γ2),
dmLSR

dt
= −mLSR(β − γ2),

dF 2

dt
= −m

2
LSR

s2
LSR

γ2,

respectively. In that case we find

s2
LSR = e

R T
t {2β(s)+α2(s)−γ2(s)}ds, (19)

mLSR = e
R T

t {β(s)−γ2(s)}ds, (20)

F 2 =

∫ T

t

γ2(s)e−
R T

s {α
2(u)+γ2(u)}du ds, (21)

and the portfolio weights are given by

φt = hCe−
R T

t {β(s)+α2(s)} ds + (h−HµS)
(
Vφ,t − Ce−

R T
t {β(s)+α2(s)} ds

)
. (22)

Notice the weights h and h −HµS represent the instantaneous MR (or GMV) and LSR

portfolios, as in (10) and (11), respectively. The LSR and MR strategies starting at time

t = 0, found for C = 0 and C = s2
LSR(0;T )/mLSR(0;T ) respectively, are given by

φLSR,t = (h−HµS)VLSR,t, (23)

φMR,t = he
R t
0 {β(s)+α2(s)} ds + (h−HµS)

(
VMR,t − e

R t
0 {β(s)+α2(s)} ds

)
. (24)

The MV efficient strategies (22) are affine combinations,

φt = KφMR,t + (1−K)φLSR,t, K = Ce−
R T
0 {β(s)+α2(s)} ds.

Notice for fixed K these term-T MV efficient strategies do not depend on T . That is, the

LSR and MR strategies span all frontiers of varying terms T . So, in the continuous-time

deterministic case we find that MV efficient strategies are uniformly MV efficient.

Notice that the LSR strategy amounts to investing continuously in the instantaneous

10



LSR portfolio, with relative weights given by h−HµS . If there is a riskless asset, i.e. when

α2 = 0 for all t, then also the MR strategy amounts to repeating the same instantaneous

steps. That is, in that case MR amounts to continuously investing in the bank account

with (deterministic) short rate equal to β, and VMR,t = exp
∫ t

0
{β(s)} ds. For this case,

uniform MV efficiency (or strong separability) has been described by Bajeux-Besnainou

and Portait (1998).

When there is no risk-free asset the MR strategy is more complicated. It starts out by

investing in the instantaneous GMV portfolio, which equals the instantaneous MR, with

weights h. At time t a deterministic amount exp
∫ t

0
{β(s) + α2(s)} ds is invested in the

instantaneous GMV, while the rest of the portfolio value is invested in the instantaneous

LSR. Still we find uniform MV efficiency. Consequently, Merton’s (1972, 1973) two mutual

fund theorems can be formulated in terms of two funds that are not only instantaneously

MV efficient, as it was described by Merton, but which are MV efficient for all terms.

The LSR and MR strategies are not only uniformly MV efficient, they are also uniformly

LSR and MR strategies. By contrast, the term-T GMV strategy is uniformly MV efficient,

but it is GMV only for term T . That is, the GMV strategy for term T is found for

KGMV =
mGMV(0;T )−mLSR(0 : T )

mMR(0;T )−mLSR(0;T )
=

m2
LSR(0;T )

s2
LSR(0;T ){1− F 2(0;T )}

,

which varies with T .

3.1.1 Constant parameters

In particular, if the parameters α2, β, and γ2 are constant, we find a remarkable result.

The uniformly MV efficient processes can be described by

dVt = Vt

(
β dt+ α dW

(1)
t

)
+
(
Ke(β+α2)t − Vt

)(
γ2 dt+ γ dW

(2)
t

)
, (25)

where W
(1)
t = h′σSWt/α and W

(2)
t = µ′SHσSWt/γ are the Brownian motions that drive

the MV-efficient strategies. For K = 0 we find the LSR strategy with growth rate β − γ2,

but e−(β−γ2)tVLSR,t is not stationary due to its increasing variance. For K 6= 0 we find

the other MV efficient strategies, which all converge to investments in a unique trend

stationary process with growth rate β + α2. That is, applying Ito’s Lemma to (25) shows

the discounted processes V ∗t = e−(β+α2)tVt/K all satisfy

dV ∗t = V ∗t

(
−α2 dt+ α dW

(1)
t

)
+ (1− V ∗t )

(
γ2 dt+ γ dW

(2)
t

)
. (26)
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Only the starting values V ∗0 = 1/K differ. All processes converge to a stationary process

with equilibrium value V
∗

= γ2/(α2 + γ2) and unconditional standard deviation equal to

αγ/(α2 + γ2).

In fact, the unconditional distribution of the stationary process is symmetric. That

is, consider a value V ∗t = V
∗

+ ∆, and using the notation dV ∗t = µ dt + σ dWt, we find

µ = −∆(α2 + γ2) and σ2 = α2γ2/(α2 + γ2) + ∆2(α2 + γ2). We find that opposite values ∆

and −∆ produce opposite µ’s but the same σ2. Due to this symmetry the unconditional

distribution of V ∗t must be symmetric.

Finally, this unique uniformly MV efficient trend stationary (UMVETS) strategy, which

has a symmetric distribution, has another interesting property. When starting in equilib-

rium, K = 1 +α2/γ2, it forms with LSR a unique pair of uniformly MV efficient strategies

whose values are uncorrelated for all t.8

For the constant parameters case we find the following moments

mLSR = e(β−γ
2)(T−t), v2

LSR = e(2β+α2−γ2)(T−t) − e2(β−γ2)(T−t),

mGMV =
mLSR(α2 + γ2)

α2 + γ2e−(α2+γ2)(T−t) , v2
GMV =

α2v2
LSR

α2 + γ2e−(α2+γ2)(T−t) ,

mMR =
mLSR{α2 + γ2e(α

2+γ2)(T−t)}
α2 + γ2

, v2
MR =

α2v2
LSR{α2 + γ2e(α

2+γ2)(T−t)}
(α2 + γ2)2

,

and frontier parameters

F 2 =
γ2{1− e−(α2+γ2)(T−t)}

α2 + γ2
, Γ2 =

γ2{1− e(α2+γ2)(T−t)}
α2 + γ2e−(α2+γ2)(T−t) .

Thus we find KGMV → 0 if T → ∞. Furthermore, if T → ∞, v2
GMV/m

2
GMV → ∞ and

v2
LSR/m

2
LSR →∞, whereas v2

MR/m
2
MR → α2/γ2.

Bekker and Bouwman (2009b) model the term structure of interest rates. They use an

underlying market of capital market returns, without a bank account, that drives the short

rate. In this approach the growth rate of the unique UMVETS strategy, β + α2, serves

as the growth rate of the market portfolio of the underlying market. Using Sharpe ratio

optimality of the market portfolio, a stochastic short rate is induced by the underlying

capital market returns. The growth rate of the LSR portfolio, β − γ2, or the growth rate

of the term-T GMV portfolio where T → ∞, serves as the growth rate of the long bond

with maturity T →∞.

8The computations are somewhat tedious.
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3.2 The effect of state variables

In the presence of state variables the portfolio weights φt in (18) are located in the range

space of (h,HµS ,HΣSZ). This indicates M + 2 mutual funds, which is in agreement with

Merton’s (1973) M + 2 mutual fund theorem. In general it will not be the case that two

strategies span all frontiers. For example, the instantaneous MR strategy invests at t = 0

in h, whereas the term-T MR strategy invests at time t = 0 in h +HΣSZ

∂ log(mLSR/s
2
LSR)

∂z
,

which may be different from h.

An interesting special case is given by the situation where the state variables are in-

stantaneously uncorrelated with the asset returns, i.e. ΣSZ = O. In that case the portfolio

weights (18) are simply given by

φt = hC
mLSR

s2
LSR

+ (h−HµS)

(
Vφ,t − C

mLSR

s2
LSR

)
,

just as in the deterministic case. Again, the LSR strategy is given by φLSR,t = (h −
HµS)VLSR,t, which is uniformly MV efficient. However, the ratio mLSR/s

2
LSR may be stochas-

tic and, as a result, a MR strategy may vary with T . So there need not be two uniformly

MV efficient strategies.

Furthermore, by applying the Feynman-Kač theorem (Karatzas and Shreve, 1991) to

(15), (16), and (17) with ΣSZ = O, the MV parameters admit the following simple repre-

sentation:

s2
LSR = Et

(
e

R T
t {2β(s,Zs)+α2(s,Zs)−γ2(s,Zs)} ds | Zt = z

)
,

mLSR = Et

(
e

R T
t {β(s,Zs)−γ2(s,Zs)} ds | Zt = z

)
,

F 2 = Et

(∫ T

t

γ2(s,Zs)e
−

R T
s {α

2(u,Zu)+γ2(u,Zu)}du ds | Zt = z

)
.

Example 1. Consider the following market of two assets with instantaneous returns equal

to the instantaneous GMV and LSR returns, respectively, and a single mean reverting state

variable affecting the level of returns:

µS(t, z) =

(
z

z − γ2

)
, σS =

(
α 0 0

α γ 0

)
,

µZ(t, z) = κ(βo − z), σZ = (0, 0, σo).

The instantaneous parameters α and γ satisfy (7) and (9), respectively, and β = z. The

instantaneous MV efficient portfolio weights are given by h = (1, 0)′ and h−HµS = (0, 1)′.

13



If α = 0, the first asset is risk-free, with a stochastic short rate equal to z, otherwise both

assets are risky.

The MV parameters s2
LSR, mLSR and F 2 satisfy (15), (16) and (17), with ΣSZ = O, and

the boundary conditions. The solution is derived in Appendix A.4:

s2
LSR = exp

[(
2βo + α2 − γ2 +

2σ2
o

κ2

)
(T − t)−

(
2(β0 − z)

κ
+

4σ2
o

κ3

){
1− e−κ(T−t)

}
(27)

+
σ2
o

κ3

{
1− e−2κ(T−t)}] ,

mLSR = exp

[(
βo − γ2 +

σ2
o

2κ2

)
(T − t)−

(
β0 − z
κ

+
σ2
o

κ3

){
1− e−κ(T−t)

}
(28)

+
σ2
o

4κ3

{
1− e−2κ(T−t)}] ,

F 2 = γ2

∫ T

t

m2
LSR(u, z;T )

s2
LSR(u, z;T )

du. (29)

We find m2
LSR/s

2
LSR is deterministic, since it does not depend on z. As a result, F 2 is also

deterministic. A MV efficient strategy over the period [0, T ] is given by

φt = hC
mLSR

s2
LSR

+ (h−HµS)

(
Vφ,t − C

mLSR

s2
LSR

)
.

Comparing these portfolio weights φt with the portfolio weights φ∗t that are optimal over

the subperiod [0, T ∗] with 0 < T ∗ < T implies that φt can only be MV efficient over [0, T ∗]

if there exists a C∗ ∈ R such that

C
mLSR(t, z;T )

s2
LSR(t, z;T )

= C∗
mLSR(t, z;T ∗)

s2
LSR(t, z;T ∗)

.

However, mLSR(t,z;T )

s2LSR(t,z;T )
depends on z for t < T , while it does not for t = T . For C 6= 0,

we therefore cannot find a C∗ ∈ R that satisfies the above condition and hence φt is not

uniformly efficient. For C = 0 we obtain the LSR strategy, which is evidently uniformly

LSR and thus uniformly MV efficient.

Finally, observe that for α = 0 the market has a Vasicek (1977) short rate process.

4 Conclusion

Motivated by yield curve modeling, this paper solves the dynamic MV portfolio selection

problem in both discrete and continuous time by using dynamic programming. The solution

is derived for a general incomplete market that nests a complete market as well as an

14



incomplete market with or without a riskless asset. State variables are introduced to

incorporate stochastic market parameters. The joint process of asset prices and state

variables is assumed Markov.

It is observed that the dynamic MV portfolio selection problem is equivalent to MV

hedging of a constant claim C given a fixed initial investment. The value function of

the MV hedging problem is expressed as a quadratic form that is driven by three MV

parameters describing the MV frontier. In continuous time, we obtain a recursive system

of PDE’s in the three MV parameters by solving the HJB equation. The optimal portfolio

weights of a MV efficient strategy are expressed as a function of the MV parameters.

Explicit solutions to the MV problem are obtained for a market with deterministic

parameters. All MV efficient strategies in this market are shown to be uniformly MV

efficient, i.e. MV efficient on any term T . Consequently, a strong version of the Mutual

Fund theorem holds, stating that all MV investors with arbitrary investment horizons

invest buy-and-hold in two uniform MV efficient mutual funds.

The market with constant parameters provides the most straightforward generalization

of one-period MV analysis to a dynamic continuous-time setting. In this market there exists

a unique, symmetrically distributed, trend stationary, uniformly MV efficient strategy.
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Appendix

A.1 Dynamic Mean-Variance analysis in discrete time

A.1.1 The market

In discrete time, the set of trading times is given by the set T = {t0, . . . , tn}, with

0 = t0 < . . . < tn = T . Define vectors of single-period gross returns Rti = diag(Sti−1
)−1Sti ,

i = 1, . . . , n, then the joint process
(
R′ti ,Z

′
ti

)′
is Markov as well. We assume that, condi-

tional on Zti , both Rti+1
and Zti+1

are independent of Rti . The conditional moments of

the single-period gross returns are denoted, for i = 0, . . . , n− 1, by9

mS,i = mS(ti, z; ti+1) = E(Rti+1
| Zti = z),

ΩS,i = ΩS(ti, z; ti+1) = E(Rti+1
R′ti+1

| Zti = z).

The set of admissible portfolios Φ is again given by portfolios that satisfy the following

two conditions. First, admissible portfolios are self-financing, so that they satisfy Vφ,ti =

ı′φti , for i = 0, . . . , n, and Vφ,ti+1
= φ′tiRti+1

, for i = 0, . . . , n − 1. Secondly, they satisfy

the property E
(
V 2
φ,ti+1

)
<∞, for i = 0, . . . , n− 1.

A.1.2 The one-period frontier

In discrete time the matrices of second conditional moments ΩS(ti, z; ti+1) are assumed to

be nonsingular for all ti, i = 0, . . . , n − 1 and z. So, again the case of a riskless asset is

covered, just as the case when all assets are risky. The one-period solution is given by

s2
LSR,i = s2

LSR(ti, z; ti+1) =
1

ı′Ω−1
S,i ı

, (A.1)

mLSR,i = mLSR(ti, z; ti+1) =
m′S,iΩ

−1
S,i ı

ı′Ω−1
S,i ı

, (A.2)

F 2
i = F 2(ti, z; ti+1) = m′S,i

(
Ω−1

S,i −
Ω−1

S,i ıı
′Ω−1

S,i

ı′Ω−1
S,i ı

)
mS,i. (A.3)

9When there can be no confusion, we use the short notation, such as, mS,i. In other cases, where we
need be more explicit, we use the other notation, such as mS (ti, z; ti+1).
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Furthermore, the one-period MV efficient MR and LSR portfolios are given by

φMR(ti, z; ti+1) =
Ω−1

S,imS,i

ı′Ω−1
S,imS,i

, φLSR(ti, z; ti+1) =
Ω−1

S,i ı

ı′Ω−1
S,i ı

. (A.4)

When ΣS,i = ΩS,i −mS,im
′
S,i is nonsingular we find

φMR(ti, z; ti+1) =
Σ−1

S,imS,i

ı′Σ−1
S,imS,i

, φGMV(ti, z; ti+1) =
Σ−1

S,i ı

ı′Σ−1
S,i ı

.

A.1.3 MV efficiency in discrete time

In discrete time, the value function (4) applies for t = ti, i = 0, . . . , n and Bellman’s

principle of optimality now requires both

J(ti, z, x) = min
φti

E(J(ti+1,Zi+1,φ
′
ti
Rti+1

) | Zti = z, ı′φti = x), (A.5)

for i = 0, . . . , n− 1, and the boundary condition (14) to hold true.

Theorem 2. For T = {t0, . . . , tn}, with 0 = t0 < . . . < tn = T the value function (3) is

of the form (4) and the dynamic MV parameters s2
LSR, mLSR and F 2: T × RM 7→ R are

recursively defined by the following system of equations

s2
LSR = s2

LSR(ti, z; tn) =
1

ı′Q−1
i ı

, (A.6)

mLSR = mLSR(ti, z; tn) =
ı′Q−1

i pi

ı′Q−1
i ı

, (A.7)

F 2 = F 2(ti, z; tn) = u2
i + p′i

(
Q−1
i −

Q−1
i ıı

′Q−1
i

ı′Q−1
i ı

)
pi, (A.8)

and

Qi = E(s2
LSR(ti+1,Zti+1

; tn)Rti+1
R′ti+1

| Zti = z),

pi = E(mLSR(ti+1,Zti+1
; tn)Rti+1

| Zti = z),

u2
i = E(F 2(ti+1,Zti+1

; tn) | Zti = z),

with boundary conditions mLSR(tn, z; tn) = s2
LSR(tn, z; tn) = 1− F 2(tn, z; tn) = 1.

The portfolio weights φti: T ×RM 7→ RN for the strategy that minimizes (12) are given

17



by

φti =
Q−1
i pi

ı′Q−1
i pi

C
mLSR

s2
LSR

+
Q−1
i ı

ı′Q−1
i ı

(
Vφ,ti − C

mLSR

s2
LSR

)
. (A.9)

The proof is given in Appendix A.3.

A.1.3.1 The deterministic case

In the deterministic case, when there are no state variables, we find Qi = ΩS,is
2
LSR(ti+1; tn),

pi = mS,imLSR(ti+1; tn), and u2
i = F 2(ti+1; tn). So, using (A.1), (A.2) and (A.3), the

conditions (A.6), (A.7), and (A.8) reduce to

s2
LSR = s2

LSR,is
2
LSR(ti+1; tn),

mLSR = mLSR,imLSR(ti+1; tn),

F 2 = F 2(ti+1; tn) + F 2
i

m2
LSR(ti+1; tn)

s2
LSR(ti+1; tn)

,

respectively. In that case we find

s2
LSR =

n−1∏
j=i

s2
LSR,j, (A.10)

mLSR =
n−1∏
j=i

mLSR,j, (A.11)

F 2 =
n−1∑
j=i

{
F 2
j

n−1∏
k=j+1

m2
LSR(tk; tn)

s2
LSR(tk; tn)

}
, (A.12)

and the portfolio weights are given by

φti =
Ω−1

S,imS,i

ı′Ω−1
S,imS,i

C
n−1∏
j=i

(
mLSR,j

s2
LSR,j

)
+
Ω−1

S,i ı

ı′Ω−1
S,i ı

{
Vφ,ti − C

n−1∏
j=i

(
mLSR,j

s2
LSR,j

)}
(A.13)

= φMR(ti; ti+1)C
mLSR

s2
LSR

+ φLSR(ti; ti+1)

(
Vφ,ti − C

mLSR

s2
LSR

)
,

where we used the one-period portfolios (A.4).

Again, the LSR and MR strategies are uniformly LSR and MR, respectively, and hence

18



they are uniformly MV efficient, since they do not depend on T :

φLSR,ti = φLSR(ti; ti+1)VLSR,ti (A.14)

φMR,ti = φMR(ti; ti+1)
i−1∏
j=0

(
s2

LSR,j

mLSR,j

)
+ φLSR(ti; ti+1)

{
VMR,ti −

i−1∏
j=0

(
s2

LSR,j

mLSR,j

)}
. (A.15)

Thus we find that uniform efficiency is not restricted to continuous trading. Also in discrete

time, with a deterministic market, MV efficient strategies span MV frontiers of all terms

T , whether or not there is a risk-free asset. Both short-term and long-term investors agree

about the MV efficient strategies.

A.2 Proof of Theorem 1

Using the Hamilton-Jacobi-Bellman equation (13) and the optimal value function (4) we

find

A(t, z, x) =

(
x

−C

)′
(At +Az +Azz)

(
x

−C

)
,

where

At =

(
∂s2LSR

∂t
∂mLSR

∂t
∂mLSR

∂t
−∂F 2

∂t

)
, Az =

(
µ′z

∂s2LSR

∂z
µ′z

∂mLSR

∂z

µ′z
∂mLSR

∂z
−µ′z ∂F

2

∂z

)
,

and

Azz = 1/2

 tr
{
Σz

∂2s2LSR

∂z∂z′

}
tr
{
Σz

∂2mLSR

∂z∂z′

}
tr
{
Σz

∂2mLSR

∂z∂z′

}
− tr

{
Σz

∂2F 2

∂z∂z′

} .

To compute B(t, x,z), the Lagrangian is given by

L(φt, λ) = φ′t (µSJx +ΣSZJzx) +
1

2
φ′tΣSφJxx − λ (ı′φt − x) ,

with first order conditions

µSJx +ΣSZJzx +ΣSφtJxx − λı = 0,

ı′φt = x.
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The first order conditions can be reexpressed as(
ΣS ı

ı 0

)(
φt

− λ
Jxx

)
=

(
−µS

Jx

Jxx
−ΣSZ

Jzx

Jxx

x

)
.

Notice that

Jx = 2(s2
lsr,mlsr)

(
x

−C

)
, Jzx = 2

(
∂s2

lsr

∂z
,
∂mlsr

∂z

)(
x

−C

)
, Jxx = 2s2

LSR.

Consequently, using (6), φt is given by

φt = {h(1, 0)−HΨ}

(
x

−C

)
,

where

Ψ = Ψ (t, z;T ) = s−2
LSR

{
µS(s2

LSR,mLSR) +ΣSZ

(
∂s2

LSR

∂z
,
∂mLSR

∂z

)}
,

which amounts to (18). Furthermore,

B(t, z, x) =

(
x

−C

)′
Bφ

(
x

−C

)
,

Bφ = s2
LSR

{(
1

0

)
h′Ψ + Ψ ′h(1, 0) + h′ΣSh

(
1

0

)
(1, 0)− Ψ ′HΨ

}
.

As (13) holds for all x, we find

At +Az +Azz +Bφ = 0, (A.16)

which amounts to the three conditions (15), (16), and (17). The boundary conditions follow

from (14). The Verification Theorem of stochastic optimal control theory now implies that

the value function is of the form (4) and the optimal strategy is given by (18). �

A.3 Proof of Theorem 2

Using the Bellman equation (A.5) and the optimal value function (4) we find

J(ti, z, x) = min
φti

{(
φti
−C

)′(
Qi pi

p′i 1− u2
i

)(
φti
−C

)
| ı′φti = x

}
.
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The solution is found for

φti =

{
Q−1
i ı

ı′Q−1
i ı

,−
(
Q−1
i −

Q−1
i ıı

′Q−1
i

ı′Q−1
i ı

)
pi

}(
x

−C

)
,

which amounts to (A.9). For the value function we thus find

J(ti, z, x) =

(
x

−C

)′( Q−1
i ı

ı′Q−1
i ı

−
(
Q−1
i −

Q−1
i ıı′Q−1

i

ı′Q−1
i ı

)
pi

0 1

)′(
Qi pi

p′i 1− u2
i

)
×

(
Q−1

i ı

ı′Q−1
i ı

−
(
Q−1
i −

Q−1
i ıı′Q−1

i

ı′Q−1
i ı

)
pi

0 1

)(
x

−C

)

=

(
x

−C

)′ 1
ı′Q−1

i ı

ı′Q−1
i pi

ı′Q−1
i ı

ı′Q−1
i pi

ı′Q−1
i ı

1− u2
i − p′i

(
Q−1
i −

Q−1
i ıı′Q−1

i

ı′Q−1
i ı

)
pi

( x

−C

)
.

Therefore, the value function is given by (4), where the mean variance parameters satisfy

the system of recursive equations (A.6), (A.7), and (A.8). Furthermore, the boundary

conditions follow from (14). It follows that the optimal strategy is given by (A.9). �

A.4 Derivation of s2
LSR

and mLSR in Example 1

Conditions (15) and (16) amount to

∂s2
LSR

∂t
+ κ(βo − z)

∂s2
LSR

∂z
+

1

2
σ2
o

∂2s2
LSR

∂z2
+ s2

LSR(2z + α2 − γ2) = 0, (A.17)

∂mLSR

∂t
+ κ(βo − z)

∂mLSR

∂z
+

1

2
σ2
o

∂2mLSR

∂z2
+mLSR(z − γ2) = 0. (A.18)

Assume the solution is of the form s2
LSR = exp{ps(t) + qs(t)z} and mLSR = exp{pm(t) +

qm(t)z}, for C2 functions ps = ps(t), qs = qs(t), pm = pm(t) and qm = qm(t) : R+ 7→ R.

The boundary conditions imply ps(T ) = qs(T ) = pm(T ) = qm(T ) = 0. In that case we find

∂s2
LSR

∂t
= {p′s + q′sz}s2

LSR,
∂s2

LSR

∂z
= qss

2
LSR,

∂2s2
LSR

∂z2
= q2

ss
2
LSR,

∂mLSR

∂t
= {p′m + q′mz}mLSR,

∂mLSR

∂z
= qmmLSR,

∂2mLSR

∂z2
= q2

mmLSR.
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Consequently, (A.17) and (A.18) amount to

s2
LSR

{
p′s + q′sz + κ(βo − z)qs +

1

2
σ2
oq

2
s + 2z + α2 − γ2

}
= 0, (A.19)

mLSR

{
p′m + q′mz + κ(βo − z)qm +

1

2
σ2
oq

2
m + z − γ2

}
= 0. (A.20)

As both s2
LSR and mLSR are positive, and (A.19) and (A.20) hold for all z, we find

q′s + 2− κqs = 0, (A.21)

p′s + κβoqs +
1

2
σ2
oq

2
s + α2 − γ2 = 0, (A.22)

q′m + 1− κqs = 0, (A.23)

p′m + κβoqm +
1

2
σ2
oq

2
m − γ2 = 0. (A.24)

Solving (A.21) and (A.23) and applying the boundary conditions, we obtain

qs =
2

κ

{
1− e−κ(T−t)

}
, qm =

1

κ

{
1− e−κ(T−t)

}
.

Substituting this solution in (A.22) and (A.24) and integrating we find

ps =

(
2βo + α2 − γ2 +

2σ2
o

κ2

)
(T − t)−

(
2β0

κ
+

4σ2
o

κ3

){
1− e−κ(T−t)

}
+
σ2
o

κ3

{
1− e−2κ(T−t)} ,

pm =

(
βo − γ2 +

σ2
o

2κ2

)
(T − t)−

(
β0

κ
+
σ2
o

κ3

){
1− e−κ(T−t)

}
+

σ2
o

4κ3

{
1− e−2κ(T−t)} .
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So, we can conclude that s2
LSR and mLSR are indeed of the form specified above, as given in

(27) and (28):

s2
LSR = exp

[(
2βo + α2 − γ2 +

2σ2
o

κ2

)
(T − t)−

(
2(β0 − z)

κ
+

4σ2
o

κ3

){
1− e−κ(T−t)

}
+
σ2
o

κ3

{
1− e−2κ(T−t)}] ,

mLSR = exp

[(
βo − γ2 +

σ2
o

2κ2

)
(T − t)−

(
β0 − z
κ

+
σ2
o

κ3

){
1− e−κ(T−t)

}
+
σ2
o

4κ3

{
1− e−2κ(T−t)}] .

We also find that m2
LSR/s

2
LSR is deterministic, since it does not depend on z. Consequently,

condition (17) implies that also F 2 is deterministic, as in (29):

F 2 = γ2

∫ T

t

m2
LSR(u, z;T )

s2
LSR(u, z;T )

du.

The MR value C = s2
LSR(0, Z0;T )/mLSR(0, Z0;T ) produces the result in Example 1.
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