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Opportunistic condition-based maintenance and aperiodic inspections for a
two-unit series system

Minou C.A. Olde Keizera, Ruud H. Teuntera,∗

aDepartment of Operations, Faculty of Economics and Business, University of Groningen, P.O. Box 800, 9700 AV
Groningen, The Netherlands

Abstract

Condition-Based Maintenance (CBM) intends to perform maintenance right before a failure occurs by

estimating the pending moment of failure based on monitoring a certain condition, such as vibration or

temperature. This paper considers a two-unit series system with economic dependencies. The aperiodic

inspection moments are optimized simultaneously with the critical levels at which maintenance is performed

in order to minimize cost and/or maximize availability. For this purpose, a stochastic model is developed

based on semi-regenerative properties of the maintained system state. We build on the work of Castanier,

B., A. Grall, and C. Bérenguer (2005), A condition-based maintenance policy with non-periodic inspections

for a two-unit series system, Reliability Engineering & System Safety 87 (1), 109–120, by fully including

all opportunistic maintenance opportunities, determining the system unavailability time more accurately,

and providing a more extensive performance evaluation. Results indicate that the accuracy with which the

unavailability time is approximated has a great impact on the resulting optimal maintenance strategy.

Keywords: Condition-based maintenance, Multi-unit system, Economic dependencies, Aperiodic

inspections, Reliability

1. Introduction

Technical systems are often subject to increasing wear and tear caused by usage, age or random shocks.

If ignored, this deterioration may eventually cause a system breakdown, which can lead to high costs, sys-

tem unavailability and safety hazards. Performing preventive or predictive maintenance can help to prevent

failures and their corresponding detriments by repairing or replacing a component before a system break-5

down occurs [1]. One type of a predictive maintenance strategy is condition-based maintenance (CBM),

which intends to perform maintenance right on time, so just before a failure occurs. The concept of CBM

is to monitor a certain condition of the equipment, such as vibration or temperature, and to initiate a

maintenance action as soon as the condition reaches a prespecified threshold value. Compared to classical
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Nomenclature

αi (Rate) parameter of the Exponential and Erlang distributions fi and f
(l)
i

A(t) System availability up to time t

A∞ Long-run average system availability

C(t) Cumulative operating costs up to time t

C∞ Long-run average operating costs per time unit

c
(i)
c Cost of a corrective replacement for component i

C
(i)
C (t) Cumulative corrective replacement costs of component i up to time t

cd Unavailability cost rate, per time unit that the system is unavailable

cn Cost of a system inspection

c
(i)
p Cost of a preventive replacement for component i

C
(i)
P (t) Cumulative preventive replacement costs of component i up to time t

cs Fixed set-up costs for a replacement

CS(t) Cumulative set-up costs up to time t

CU (t) Cumulative system unavailability costs up to time t

∆(k,k+1)X
i Degradation increment, ∆(k,k+1)X

i = Xi
k+1 −Xi

k

DU (t) Cumulative system unavailability time up to time t

D̂U (t) Upper bound for DU (t)

D̃U (t) Linear approximation of DU (t)

Eπ[·] Expected value with respect to the stationary law π

fi(·) Pdf of the deterioration increments of component i

f
(l)
i (·) Pdf of the cumulative deterioration increments over l time units for component i

Fi(y, l) Probability that component i will not fail during the first l time units starting with a deterio-

ration level of y

hi(m | y) Pdf of a failure at time m (under the assumption of a linear increase in deterioration), given

a previous deterioration level of y for component i

Li Failure-level of component i

n Number of inspection threshold values for each component

π(x1, x2) Long-run probability that components 1 and 2 are in states x1 and x2, respectively, at the

start of an inspection

q Binary variable indicating whether the system unavailability time is approximated using the

upper bound (q = 0) or the linear increase in deterioration (q = 1)

S Length of a semi-regeneration cycle in steady state

Xi
k Condition of component i at time k

ξ
(i)
j Inspection thresholds for component i (j = 0, 1, . . . , n− 1)

ξ
(i)
n Preventive replacement threshold for component i

ζi Opportunistic replacement threshold for component i

2



maintenance policies, CBM is more efficient [1, 2], since it can postpone maintenance activities, while fail-10

ures are limited due to the constant monitoring of the condition. Furthermore, CBM has been proved to

minimize maintenance costs, improve operational safety, and reduce the number and severity of failures [3].

Over the past decades, a lot of research has been performed in the field of maintenance strategies. A

number of surveys have been written, e.g., [4–6]. However, most of this research considers preventive main-

tenance strategies rather than predictive maintenance strategies such as CBM. Furthermore, most existing15

literature on CBM focuses on a system consisting of just one component. In case a system consists of two or

more components, it does not necessarily hold true that the optimal decision for one component is optimal

for the complete system [7]. This depends on the types of dependencies for systems consisting of multiple

components: economic dependence, structural dependence, and probabilistic (or stochastic) dependence [8].

In this paper, we focus on the first, which applies when combining maintenance actions on several compo-20

nents yields a lower cost than maintaining each component separately. This is for example the case when

shared set-up costs are involved. Since these fixed costs are independent of the number of components that

require maintenance, it can be profitable to opportunistically replace components when another component

requires immediate maintenance.

Few articles do consider CBM for systems consisting of multiple components subject to economic de-25

pendencies [7, 9, 10]. In [9], dynamic maintenance grouping is applied to optimize the maintenance costs

on a rolling horizon for a system with periodic inspections. In [10], a CBM policy is proposed based on the

proportional hazards model, where the periodic inspection moments are fixed in advance. A CBM policy

for a two-unit series system with aperiodic inspections is developed in [7], where the maintenance costs are

obtained by using semi-regenerative properties of the maintained system state. The latter model is very30

advanced, in that the inspection moments and the maintenance thresholds are optimized simultaneously.

In practice, the critical level at which preventive maintenance is initiated is usually based on recom-

mendations of suppliers and manufacturers of condition-monitoring equipment rather than on incentives to

save costs or improve reliability [11]. Justifications for the selected inspection moments are also frequently

lacking, and usually based on a simple rule-of-thumb. Due to safety concerns, the critical level is likely to35

be set too low, while inspections may be scheduled more often than actually required. To overcome these

problems, most existing literature on CBM considers either a model that optimizes the critical level at

which a preventive replacement should be initiated given the (periodic) inspection intervals, or a model that

optimizes the inspection intervals given the critical level. Besides Castanier et al. [7], joint optimization has

only be studied in [11–13]. A CBM model based on the random coefficient growth model is described in [11],40

while a multi-threshold CBM policy is considered in [7, 12, 13]. In fact, [7] and [13] both extend the model

of [12], where a CBM policy is developed for a system consisting of one component and failures are noticed

immediately. Partial repairs and durations of maintenance activities are considered in [13], assuming that

failures can only be noticed upon inspection. A system consisting of two components that are functioning
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in series is analyzed in [7].45

In this paper, we extend the work of Castanier et al. [7] that is unique in its simultaneous optimization

of inspection and maintenance decisions for a system consisting of multiple components. We determine the

unavailability costs more accurately and include all possibilities for opportunistic replacements. In addition,

we consider availability as an additional performance criterion and we perform a more extensive comparative

cost assessment. The remainder of this article is organized as follows. Section 2 describes the deterioration50

model, followed by the multi-threshold maintenance policy in Section 3. Next, the definition and evaluation

of the performance criteria are given in Section 4, while Section 5 contains the performance assessments and

a comparison with classical maintenance policies. Section 6 concludes the paper.

2. System description

2.1. Deterioration model55

The discrete-time system under consideration consists of two components, which independently suffer

from increasing wear. The condition of component i at time k can be described by a random variable Xi
k,

for i = 1, 2 and k ∈ N. A failure of component i will occur as soon as its deterioration level exceeds a preset

failure level Li, but can only be noticed upon inspection. This means that the component remains in the

failed state until the next planned inspection.60

An inspection can be performed at the start of each time unit. In other words, the time between possible

inspection moments serves as the time unit. Note that, for i = 1, 2, at the start of the process (at time 0)

and after each replacement (say at time tr), component i is assumed to be as good as new, i.e., Xi
0 = 0 and

Xi
tr = 0. The degradation of the global system is given by (Xk)k∈N = (X1

k , X
2
k)k∈N. Since we assume that

degradation will increase over time, we require the random deterioration increments ∆(k,k+1)X
i in each time65

interval to be nonnegative. In addition, we assume that the increments are stationary and exchangeable, so

the degradation increments satisfy the memoryless property.

Let fi denote the probability density function of the deterioration increments ∆(k,k+1)X
i of component

i, for i = 1, 2 and for all k ∈ N. From the assumption that the deterioration increments are stationary and

exchangeable, it follows that the distribution functions fi are infinitely divisible [14]. This is for example70

the case for all gamma distributions. The property of infinitely divisible increments makes a gamma process

suitable for describing deterioration caused by continuous use [15]. In particular, it is very suitable for

describing the steady evolution of wear between the start-up period and the wear accumulation at the end

of the system’s life [6]. As in [7], we select fi as the exponential distribution with rate parameter αi for

component i, i = 1, 2. Since the sum of l exponential distributions with parameter αi (which is the increase75

in deterioration during l time units) follows an Erlang distribution with parameters αi and l, it follows

immediately that f
(l)
i is an Erlang distribution with parameters αi and l.
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2.2. Maintenance actions and corresponding costs

At each time unit, a decision is needed on whether or not to perform an inspection, while at each

inspection, a decision is needed on what components to replace. Obviously, failed components should be80

replaced correctively. Moreover, a functioning component may also be replaced preventively if it is close

to failure, or opportunistically if the other component is replaced as well and simultaneous replacements

are cost efficient. In practice, shared set-up costs can arise from traveling to the right location, scheduling

personnel, ordering spare parts, or doing paperwork. The costs of the different maintenance operations are

given in Table 1.

Table 1: An overview of the costs associated with the different maintenance operations.

Maintenance action Corresponding costs (for item i)

Inspection (both items together) cn

Corrective replacement (per item) c
(i)
c

Preventive replacement (per item) c
(i)
p

Shared set-up cost replacement cs

85

It is realistic to assume that the fixed cost of an inspection (planning, transportation, and possibly a

shutdown) are relatively large compared to the variable cost depending on the number of components that

is inspected, as no material/repair costs are involved. For this reason, we assume that all components are

inspected at every inspection, i.e., that there are common inspection moments, at which a cost cn is incurred.

Since failures can only be noticed upon inspection, the system may spend some time in the failed state before90

it will be inspected and maintained. In such a case, the so-called unavailability cost rate cd is incurred per

unit of time that the system is unavailable. The amount of time that a component is unavailable cannot be

measured exactly, because failures are only noticed upon inspection. As discussed in detail later, an upper

bound for the unavailability time is used in [7], while we also present a more accurate approximation and

show that this significantly affects the results.95

2.3. Performance criteria

Important performance criteria for the multi-threshold maintenance policy are the long-run average

maintenance costs per period and the long-run average availability. Whereas only the former is considered

in [7], we consider both. The multi-threshold maintenance policy aims at optimizing all threshold values

simultaneously in order to minimize the maintenance costs, or to maximize the availability.100
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3. Multi-threshold maintenance policy

Let us define ξ
(i)
0 , ξ

(i)
1 , . . . , ξ

(i)
n (with ξ

(i)
0 ≤ ξ

(i)
1 ≤ . . . ≤ ξ

(i)
n ≤ Li) as the threshold values of component i,

where n denotes the fixed number of inspection threshold values for each component. The lowest threshold

value is that of a new component, and it is normalized to zero, i.e., ξ
(i)
0 := 0. The notation ξ

(i)
0 is not strictly

needed but will turn out to be helpful in representing the maintenance policy. At the moment, say k, of105

an inspection, the deterioration level Xi
k of each component i is revealed. Comparison of these levels with

the threshold values then indicates whether or not a replacement should be performed for each item, and

when to perform the next inspection. Exactly how this is done is described in detail in what remains of this

section, in three steps.

110

Step 1: Corrective and preventive replacements

In this step, we determine for each component separately whether it requires maintenance. Inspect compo-

nent i (i = 1, 2), and compare the deterioration level Xi
k observed with the threshold values. This reveals

the state of the component.

If 0 ≤ Xi
k < ξ

(i)
n : Component i does not require maintenance yet.115

If ξ
(i)
n ≤ Xi

k < Li: Immediately replace component i preventively.

If Xi
k ≥ Li: Component i has failed. Replace component i correctively.

Step 2: Opportunistic replacements

If the first step indicates that one component must be replaced, and so set-up costs have to be paid anyway,

then it may be cost efficient to replace the other component as well. We therefore introduce additional120

threshold values ζi (with 0 ≤ ζi ≤ ξ(i)n for i = 1, 2) and the following opportunistic replacement strategy.

If 0 ≤ Xi
k < ζi: Component i does not require maintenance yet.

If ζi ≤ Xi
k < ξ

(i)
n and Xj

k ∈ [ξ
(j)
n ,∞) (j requires a replacement) for j 6= i: Replace component i

preventively (opportunistically).

Step 3: Next inspection moment125

The third step consists of determining the next inspection moment. The following policy is used to determine

when the next inspection should be scheduled, taking into account the decisions taken in steps 1 and 2. After

component i has been replaced, it is as good as new again, and Xi
k becomes zero (i = 1, 2).

If ξ1l1 ≤ X1
k < ξ1l1+1 and ξ2l2 ≤ X2

k < ξ2l2+1 for l1, l2 ∈ {0, 1, . . . , n − 1}: The system needs to be

inspection again at min{n− l1, n− l2} periods from now.130
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So the system will be inspected more often when one of its components is approaching failure.

In Figure 1, an example of the wear patterns and corresponding inspection and maintenance actions of

a two-unit series system is given. Here n = 2, implying that the next inspection is always scheduled at

most two time units later. At time 0, both components are as good as new, and the next inspection is135

scheduled two time units later. As soon as at least one component exceeds its inspection threshold ξ
(i)
1 ,

the next inspection is scheduled one time unit later. At times 6 and 13, one of the components requires a

preventive replacement, while the other component is replaced opportunistically. This results in a complete

system replacement. Furthermore, at time 10, only component 1 is replaced, since the deterioration level of

component 2 does not exceeds its opportunistic replacement threshold ζ2.
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Figure 1: Example evolution of the wear patterns of two components under the multi-threshold maintenance policy with n = 2.

140

4. Evaluation of the performance criteria

The deterioration process contains (semi-)regenerative properties, implying that the costs (and system

availability) can be evaluated during a single inspection cycle [7, 13]. To this end, a stationary law π(x1, x2)

needs to be constructed, denoting the probability density function of being in state (x1, x2) at the start of

an inspection.145
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4.1. Stationary law

The stationary law π(x1, x2) can be obtained as the probability density of being in state (y1, y2) multiplied

by the probability of moving from state (y1, y2) to state (x1, x2) during an inspection cycle, integrated over

all possible states (y1, y2). Since these probabilities depend on whether or not components 1 and/or 2 are

replaced after the previous inspection, we distinguish four cases:150

Both components replaced. If y1 ∈ [ξ1n,∞) and y2 ∈ [ζ2,∞) or if y1 ∈ [ζ1, ξ
1
n) and y2 ∈ [ξ2n,∞),

then both components are replaced. Moreover, the next inspection is scheduled n periods later, which

implies that the increases in deterioration levels from 0 to x1 and from 0 to x2 have densities of f
(n)
1 (x1)

and f
(n)
2 (x2), respectively.

Only component 1 replaced. If y1 ∈ [ξ1n,∞) and y2 < ζ2, then only component 1 will be replaced155

and hence start with a deterioration level of zero. Moreover, if y2 ∈ [ξ2k, ξ
2
k+1) with k ∈ {0, 1, . . . , n−1},

then the next inspection is scheduled n− k periods later. The increases in deterioration levels from 0

to x1 and from y2 to x2 have densities of f
(n−k)
1 (x1) and f

(n−k)
2 (x2 − y2), respectively.

Only component 2 replaced. If y2 ∈ [ξ2n,∞) and y1 < ζ1, then only component 2 will be replaced

and hence start with a deterioration level of zero. Moreover, if y1 ∈ [ξ1k, ξ
1
k+1) with k ∈ {0, 1, . . . , n−1},160

then the next inspection is scheduled n− k periods later. The increases in deterioration levels from y1

to x1 and from 0 to x2 have densities of f
(n−k)
1 (x1 − y1) and f

(n−k)
2 (x2), respectively.

No replacement. If y1 ∈ [ξ1k, ξ
1
k+1) and y2 ∈ [ξ2l , ξ

2
l+1), with k, l ∈ {0, 1, . . . , n − 1}, then no

replacement will be performed, and the next inspection is scheduled min{n− k,n− l} = n−max{k, l}

periods later. The increases in deterioration levels from y1 to x1 and from y2 to x2 have densities of165

f
(n−max{k,l})
1 (x1 − y1) and f

(n−max{k,l})
2 (x2 − y2), respectively.

Using this information, the probability law π(x1, x2) can be constructed as follows.

π(x1, x2) =

(∫ ∞
ξ1n

∫ ∞
ζ2

π(y1, y2)dy2dy1 +

∫ ξ1n

ζ1

∫ ∞
ξ2n

π(y1, y2)dy2dy1

)
f
(n)
1 (x1)f

(n)
2 (x2)

+

n−1∑
k=0

∫ ∞
ξ1n

∫ min{ξ2k+1,ζ2}

min{ξ2k,ζ2}
π(y1, y2)f

(n−k)
1 (x1)f

(n−k)
2 (x2 − y2)dy2dy1

+

n−1∑
k=0

∫ min{ξ1k+1,ζ1}

min{ξ1k,ζ1}

∫ ∞
ξ2n

π(y1, y2)f
(n−k)
1 (x1 − y1)f

(n−k)
2 (x2)dy2dy1

+

n−1∑
k=0

n−1∑
l=0

∫ ξ1k+1

ξ1k

∫ ξ2l+1

ξ2l

π(y1, y2)f
(n−max{k,l})
1 (x1 − y1)f

(n−max{k,l})
2 (x2 − y2)dy2dy1

This expression can be rewritten as a nonhomogeneous linear Fredholm integral equation of the second kind:

π(x1, x2) = F (x1, x2) +

∫ ∫
S

π(y1, y2)K(x1, x2, y1, y2)dy2dy1,
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where

F (x1, x2) = f
(n)
1 (x1)f

(n)
2 (x2),

S1
i =

{
(y1, y2) : y1 ∈ [min{ξ1i , ζ1},min{ξ1i+1, ζ1}) ∩ y2 ∈ [ξ2n,∞)

}
, for i = 0, 1, . . . , n− 1,

S2
i =

{
(y1, y2) : y1 ∈ [ξ1n,∞) ∩ y2 ∈ [min{ξ2i , ζ2},min{ξ2i+1, ζ2})

}
, for i = 0, 1, . . . , n− 1,

S3
i =

{
(y1, y2) :

(
y1 ∈ [0, ξ1i ) ∩ y2 ∈ [ξ2i , ξ

2
i+1)

)
∪
(
y1 ∈ [ξ1i , ξ

1
i+1) ∩ y2 ∈ [0, ξ2i+1)

)}
, for i = 0, 1, . . . , n− 1,

S =

n−1⋃
i=0

(
S1
i ∪ S2

i ∪ S3
i

)
,

K(x1, x2, y1, y2) =


f
(n−i)
1 (x1 − y1)f

(n−i)
2 (x2)− F (x1, x2) if (y1, y2) ∈ S1

i , i = 0, 1, . . . , n− 1,

f
(n−i)
1 (x1)f

(n−i)
2 (x2 − y2)− F (x1, x2) if (y1, y2) ∈ S2

i , i = 0, 1, . . . , n− 1,

f
(n−i)
1 (x1 − y1)f

(n−i)
2 (x2 − y2)− F (x1, x2) if (y1, y2) ∈ S3

i , i = 0, 1, . . . , n− 1.

The densities f
(l)
i are regular [7], which implies that we can solve the equation above by applying the

method of successive approximations [16]. Due to the high level of complexity, we will approximate the170

integrals numerically in our experiments in Section 5 by applying the extended midpoint rule [17] to the

two-dimensional case, by dividing the area into 30×30 parts. Note that we cannot use infinite upper bounds

while using the extended midpoint rule, but instead assume that the deterioration level of component i will

never exceed a value of 1.5 times Li, i = 1, 2. Initial testing showed that this value is sufficiently large to

ensure that the results are not affected.175

4.2. Long-run average cost per time unit and system availability

Let C(t) denote the cumulative operating costs up to time t, consisting of costs arising from mainte-

nance activities and down-time of the system, and let A(t) denote the total system availability up to time t.

Because of the semi-regenerative properties of the multi-threshold maintenance policy, we can consider the

long-run average maintenance costs C(S) during an inspection cycle, with length S. These costs can then180

be divided by the long-run average length of an inspection cycle to obtain the long-run average maintenance

costs per period. Similar logic applies to the availability criterion. In the following, let Eπ[·] denote the

expected value with respect to the stationary law π. The different components of the cost and availability

function are specified below.

The long-run average length of an inspection cycle can be obtained by again distinguishing four dif-185

ferent cases; both components replaced, only component 1 replaced, only component 2 replaced, and no

replacement, respectively:

Eπ[S] = n

(∫ ∞
ξ1n

∫ ∞
ζ2

π(x1, x2)dx2dx1 +

∫ ξ1n

ζ1

∫ ∞
ξ2n

π(x1, x2)dx2dx1

)

9



+

n∑
k=1

k

[∫ ∞
ξ1n

∫ min{ξ2n−k+1,ζ2}

min{ξ2n−k,ζ2}
π(x1, x2)dx2dx1

+

∫ min{ξ1n−k+1,ζ1}

min{ξ1n−k,ζ1}

∫ ∞
ξ2n

π(x1, x2)dx2dx1

+

∫ ξ1n−k+1

ξ1n−k

∫ ξ2n−k+1

0

π(x1, x2)dx2dx1 +

∫ ξ1n−k

0

∫ ξ2n−k+1

ξ2n−k

π(x1, x2)dx2dx1

]
.

Furthermore, the long-run average inspection costs per semi-regeneration cycle, which are incurred exactly

once per inspection cycle, are equal to cn. The long-run average preventive maintenance costs of component

i per inspection cycle (excluding the set-up costs) are given by

Eπ[C
(i)
P (S)] = c(i)p

(∫ Li

ξin

∫ ∞
0

π(x1, x2)dxjdxi +

∫ ξin

ζi

∫ ∞
ξjn

π(x1, x2)dxjdxi

)
,

while the long-run average corrective maintenance costs of component i per inspection cycle (excluding the

set-up costs) can be obtained as

Eπ[C
(i)
C (S)] = c(i)c

∫ ∞
Li

∫ ∞
0

π(x1, x2)dxjdxi.

In case at least one component is replaced, either preventively or correctively, the set-up costs for a replace-

ment cs need to be paid once. The long-run average set-up costs per inspection cycle are given by:

Eπ[CS(S)] = cs

(∫ ∞
ξ1n

∫ ∞
0

π(x1, x2)dx2dx1 +

∫ ξ1n

0

∫ ∞
ξ2n

π(x1, x2)dx2dx1

)
.

The long-run average costs incurred for the time that the system spends in the failed state during one

inspection cycle are given by:

Eπ[CU (S)] = cdEπ[DU (S)],

where Eπ[DU (S)] denotes the long-run average time that the system is unavailable during an inspection

cycle. Since by assumption failures can only be noticed upon inspection, which are scheduled at discrete

points in time, the exact moment at which a failure occurs is unknown. As an alternative to using an upper190

bound for the unavailability time [7], we suggest to assume a linear increase in deterioration between two

consecutive inspection moments. This provides a better approximation of the down-time of the system as

will be further explained in Section 4.2.1.

The long-run average maintenance costs per time unit can now be obtained as

C∞ = lim
t→∞

E[C(t)]

t
=

Eπ[C(S)]

Eπ[S]

=
cn +

∑2
i=1 Eπ[C

(i)
P (S)] +

∑2
i=1 Eπ[C

(i)
C (S)] + Eπ[CS(S)] + Eπ[CU (S)]

Eπ[S]
,

while the long-run average system availability can be obtained as195

A∞ =
Eπ[S]− Eπ[DU (S)]

Eπ[S]
.
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4.2.1. Long-run average system unavailability time

Suppose that component i fails at time t
(i)
f , with t

(i)
f ∈ [k− 1, k) and 1 ≤ k ≤ S. Since the deterioration

level of a component, and hence whether or not it has failed, can only be observed at the discrete inspection

moments, the exact moment of failure t
(i)
f is unknown. Castanier et al. [7] suggest to approximate the

component unavailability time D
(i)
U (S) by assuming that the failure occurred at time k − 1. However, this200

approximation is obvious positively biased and indeed an upper bound, which the authors acknowledge.

Moreover, since maintenance policies typically try to achieve a high up-time, failures that do occur are

likely to occur towards the end of a period. We therefore use an alternative, linear approximation of the

unavailability time, as is illustrated in Figure 2.
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Figure 2: Approximating the unavailability time D
(i)
U (S) of component i.

Note that in order for D̃
(i)
U (S) to equal S −m, we require an increase in deterioration of si = Li−yi−ui

m−(k−1) =205

Li−yi−ui

m−bmc between times k − 1(= bmc) and k(= dme).

For presentational ease, we introduce the binary variable q, indicating whether the system unavailability

time is approximated by using [7]’s upper bound (q = 0), or by assuming a linear increase in deterioration

between two consecutive inspection moments (q = 1). In other words,

Eπ,q[DU (S)] =

Eπ[D̂U (S)] if q = 0,

Eπ[D̃U (S)] if q = 1.

Next, we define the functions u1,q(m, l) as the system unavailability time if only one component fails,210

(approximately) at time m, in an inspection cycle of length l using method q, and u2,q(m1,m2, l) as the

system unavailability time if components 1 and 2 fail at (approximate) times m1 and m2, respectively, in

11



an inspection cycle of length l using method q. Then

u1,q(m, l) =

dl −me if q = 0,

l −m if q = 1,

u2,q(m1,m2, l) =

max{dl −m1e, dl −m2e} if q = 0,

max{l −m1, l −m2} if q = 1.

For the derivation of Eπ,q[DU (S)], we define the function hi(m|y) as the pdf of a failure of component i

(i = 1, 2) at timem (under the assumption of a linear increase in deterioration), given a previous deterioration215

level of y. This function consists of two parts; we multiply the probability that a failure occurs during the

dme-th time unit with the probability of a failure at time m given a failure during the dme-th time unit.

We find that

hi(m|y) =


∫∞
Li−y fi(s)ds ·

fi( Li−y

m−bmc )∫ dme
bmc fi(

Li−y

t−bmc )dt
if dme = 1,∫ Li−y

0
f
(bmc)
i (u)

(∫∞
Li−y−u fi(s)ds

)
du ·

∫ Li−y
0 f

(bmc)
i (u)·fi(Li−y−u

m−bmc )du∫ dme
bmc

∫ Li−y
0 f

(bmc)
i (u)·fi(Li−y−u

t−bmc )dudt
if dme > 1.

Furthermore, we define the function Fi(y, l) as the probability that component i will not fail during the first

l time units starting with a deterioration level of y:220

Fi(y, l) =

∫ Li−y

0

f
(l)
i (s)ds.

We can now obtain an expression for the approximated system unavailability times for both methods

by distinguishing two cases: either both components fail, or just one component fails. If both components

fail, the average system unavailability time is obtained by multiplying u2,q(m1,m2, ·) with the pdfs h1(m1|·)

and h2(m2|·) and integrating the resulting expression with respect to m1 and m2. Similarly, in case only

component 1 (2) will fail, the average system unavailability time is obtained by multiplying u1,q(m, ·) with the

pdf h1(m|·) (h2(m|·)) and the probability that component 2 (1) will not fail F2(·, ·) (F1(·, ·)) and integrating

this expression with respect to m. Similar to obtaining an expression for the probability law, this is done

separately for each of the following four cases: both components are replaced, only component 1 is replaced,

only component 2 is replaced, and no replacement is performed during the previous inspection. This gives

Eπ,q[DU (S)] =

(∫ ∞
ξ1n

∫ ∞
ζ2

π(y1, y2)dy2dy1 +

∫ ξ1n

ζ1

∫ ∞
ξ2n

π(y1, y2)dy2dy1

)
·(∫ n

0

∫ n

0

u2,q(m1,m2, n) · h1(m1|0) · h2(m2|0)dm2dm1 +

∫ n

0

u1,q(m,n) · (h1(m|0) · F2(0, n)+

F1(0, n) · h2(m|0) ) dm ) +

n∑
l2=1

∫ ∞
ξ1n

∫ min{ξ2n−l2+1,ζ2}

min{ξ2n−l2
,ζ2}

π(y1, y2) ·

(∫ l2

0

∫ l2

0

u2,q(m1,m2, l2) · h1(m1|0) · h2(m2|y2)dm2dm1+

12



∫ l2

0

u1,q(m, l2) · (h1(m|0) · F2(y2, l2) + F1(0, l2) · h2(m|y2)) dm

)
dy2dy1+

n∑
l1=1

∫ min{ξ1n−l1+1,ζ1}

min{ξ1n−l1
,ζ1}

∫ ∞
ξ2n

π(y1, y2) ·

(∫ l1

0

∫ l1

0

u2,q(m1,m2, l1) · h1(m1|y1) · h2(m2|0)dm2dm1+

∫ l1

0

u1,q(m, l1) · (h1(m|y1) · F2(0, l1) + F1(y1, l1) · h2(m|0)) dm

)
dy2dy1+

n∑
l1,l2=1

∫ ξ1n−l1+1

ξ1n−l1

∫ ξ2n−l2+1

ξ2n−l2

π(y1, y2) ·

(∫ min{l1,l2}

0

∫ min{l1,l2}

0

u2,q(m1,m2,min{l1, l2}) · h1(m1|y1)·

h2(m2|y2)dm2dm1 +

∫ min{l1,l2}

0

u1,q(m,min{l1, l2}) · (h1(m|y1) · F2(y2,min{l1, l2})+

F1(y1,min{l1, l2}) · h2(m|y2) ) dm ) dy2dy1. (1)

5. Numerical investigation

For presentational purposes, we consider a system consisting of two identical components. In this way,

the threshold values (which are the same for both components) are easier to optimize and the results are

easier to interpret than for non-identical components. It also allows us to omit the superscripts denoting to

which component a certain cost or threshold value corresponds. Figure 3 shows the failure probability over225

time of a component with α = 3.5 and L = 2, provided that it does not undergo any maintenance actions

and that it is as good as new at time 0.
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Figure 3: Failure probability over time of a new and unmaintained component with α = 3.5 and L = 2.

From Figure 3, it follows that n (the number of inspection thresholds) should not be chosen too large,

especially when considering relatively high unavailability costs as is typically the case in practice. In our

experiments, we will assume an unavailability cost of at least 100 times the inspection cost. This implies230

roughly that the probability of failure in the next period should not exceed one percent. From Figure 3, we
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observe that the failure probability is much more than one percent for n larger than two. Hence, we set the

number of inspection thresholds to n = 2, which means that the next inspection is always scheduled either

one or two periods later.

Note that our computations are made using R [18] on a computer with a 3.30 GHz quad core processor235

and 8.00 GB of RAM. Due to the high complexity and considerable computing time, it is convenient to

precalculate the integrals with respect to m1, m2, and m in Equation (1). Because these are independent

from the threshold values and the cost parameters, we only need to calculate them once for all yi ∈ [0, Li],

i = 1, 2 (which takes about 55 hours) for this specific setting of n = 2, L = 2, and α = 3.5. If we also

calculate π (which is independent of the cost parameters too) for all combinations of the threshold values240

(approximately 87 hours), the cost and availability criteria can be calculated for all possible combinations

of the threshold values within 40 seconds for any setting of the cost parameters.

The cost scenario that we consider is partially based on [7]; inspection costs normalized at cn = 1,

preventive replacement costs cp = 40 per component, corrective replacement costs cc = 100 per component,

set-up costs cs = 35 per (system) replacement, and unavailability cost rate cd = 150 per time unit. We245

do a full grid search, and calculate the value of C∞ for all ξ1, ξ2, ζ ∈ {0, 0.1, . . . , L}, with 0 ≤ ξ1 ≤ ξ2 and

0 ≤ ζ ≤ ξ2 in order to obtain the cost-minimizing threshold values.

We assess the performances using both the upper bound on the unavailability time, and our linear

approximation. We refer to these as ‘upper bound’ and ‘linear approximation’, respectively, in the remainder

of this section. Results indicate that the minimal long-run average cost per period is located somewhere250

around 29.96 when using the upper bound, and around 25.99 when using the linear approximation. We

remark that these cost figures are not readily comparable (for determining cost savings) as they are based

on different cost approximations, but the large difference does show that using a more accurate approximation

significantly alters the results. Furthermore, the corresponding optimal threshold values are given by ξ1 = 0,

ξ2 = 1.0, and ζ = 1.0 for the upper bound, and by ξ1 = 1.3, ξ2 = 1.3, and ζ = 0.8 for the linear255

approximation. These two maintenance policies differ in many aspects. Whereas by using the upper bound

it is optimal to inspect each time unit, to replace a component at a deterioration level of 1, and to never

perform opportunistic replacements, by using the linear approximation we find that the system is inspected

every other period, a component is replaced preventively at a level of 1.3, and opportunistic replacements are

performed at a deterioration level of 0.8. This implies that the accuracy of approximating the unavailability260

time has a great impact on the resulting optimal maintenance strategy as well. To gain more insight into the

behavior of C∞ and the differences between the upper bound and the linear approximation, Figure 4 shows

the minimal value of C∞ for different (fixed) values of each one of the threshold values.
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Figure 4: The minimal value of C∞ for different values of ξ1, ξ2, and ζ.

It appears from Figure 4 that the minimal costs estimated by using both the upper bound and the linear

approximation behave quite similarly, although the minimal costs obtained by the upper bound are clearly265

higher than those obtained by the linear approximation. Furthermore, we observe that increasing any one of

the thresholds ξ1, ξ2, and ζ has a greater impact on the minimal costs based on the upper bound than those

based on the linear approximation. This emphasizes the importance of approximating the unavailability

time accurately. Besides, Figure 4 illustrates that both the inspection threshold ξ1 and the opportunistic

replacement threshold ζ should not be set too high. This can be explained by the fact that the preventive270

replacement threshold ξ2 should exceed these two thresholds, forcing the number of preventive replacements

to decrease as well. On the other hand, setting the preventive replacement threshold ξ2 too low causes the

maintenance costs to increase, as maintenance is then performed too often.
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5.1. Comparison to classical maintenance policies

As noted in [7], many classical maintenance policies can be viewed as special cases of our multi-threshold275

maintenance policy. We compare the results of our policy with several of these for the particular example

that we consider.

No opportunistic replacements: Set ζ equal to ξ2 to omit opportunistic replacements.

Periodic inspections: Inspections are performed periodically (with periodicity n = 2) by setting ξ1

equal to ξ2.280

Failure-based maintenance: Under the assumption that failures can only be noticed upon inspec-

tion, failure-based maintenance can be achieved by setting both ξ2 and ζ equal to the failure level L

such that no preventive maintenance is performed.

Block replacement: Block replacement is a strategy in which all components are replaced periodi-

cally. This policy can be obtained by setting all thresholds to zero.285

The minimal long-run average costs along with the optimal threshold values for each of the above

maintenance strategies are shown in Table 2 and summarized in Figure 5. If it is optimal to perform

periodic inspections, the corresponding periodicity is also presented in the table.

Table 2: Minimal C∞, optimal threshold values, and (if optimal) periodicity for different maintenance policies using the linear

approximation (upper bound).

Maintenance policy C∞ ξ1 ξ2 ζ Periodicity

Multi-threshold policy 25.99 (29.96) 1.3 (0.0) 1.3 (1.0) 0.8 (1.0) 2 (-)

No opportunistic replacements 26.76 (29.96) 1.2 (0.0) 1.2 (1.0) 1.2 (1.0) 2 (-)

Periodic inspection 25.99 (30.25) 1.3 (1.1) 1.3 (1.1) 0.8 (0.7) 2 (2)

Failure-based maintenance 51.17 (72.53) 1.9 (2.0) 2.0 (2.0) 2.0 (2.0) - (2)

Block replacement 58.78 (59.64) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 2 (2)

Note that for the upper bound, the optimal solution obtained with our multi-threshold maintenance policy

does not deviate from the one obtained by omitting opportunistic replacements. This is due to the fact that290

in this particular example it is optimal to not include opportunistic replacements. Similarly, for the linear

approximation it turns out that periodic inspections are optimal in this particular case.
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Figure 5: The minimal value of C∞ compared to classical maintenance policies.

So, including opportunistic maintenance, and therefore performing a system-wide optimization, is essential

for this example.

5.2. Sensitivity analysis295

5.2.1. Influence of the set-up cost

So far, we assumed a set-up cost of cs = 35. This cost will now be varied from 0 to 50. Figure 6 shows

the minimal long-run average costs per period for these values of the set-up costs. As expected, the costs

obtained by the linear approximation are lower than those obtained by using the upper bound. Furthermore,

increasing the set-up costs has a larger effect on the costs obtained with the upper bound than with the300

linear approximation, because higher set-up costs imply less preventive maintenance, and hence a higher

unavailability time. In addition, Figure 7 shows the long-run average availability A∞ corresponding to the

cost-minimizing threshold values for different values of the set-up costs. It decreases as the set-up costs

increase, because maintenance is then performed less often.
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Figure 6: The minimal value of C∞ for different values

of the set-up cost.
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Figure 7: A∞ with the cost-minimizing threshold values

for different values of cs.

Furthermore, Figure 8 shows the threshold values that minimize the long-run average costs for different305

values of the set-up costs, both using the upper bound and the linear approximation.
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Figure 8: Cost-minimizing threshold values for different values of the set-up cost.
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Figure 8 confirms that the preventive replacement threshold ξ2 is consistently higher for the linear approx-

imation than for the upper bound. It also appears that the inspection threshold ξ1 is equal to ξ2 for a

wider range of set-up costs under the linear approximation, meaning that fewer inspections are performed.

Related, there are more opportunistic replacements under the linear approximation.

5.2.2. Influence of the unavailability cost rate310

Next, we vary the unavailability cost rate instead, from 100 to 200. This results in the minimal costs

C∞ shown in Figure 9 with the corresponding availability shown in Figure 10.
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Figure 9: The minimal value of C∞ for different values

of the unavailability cost rate.
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Figure 10: A∞ with the cost-minimizing threshold values

for different values of cd.

Both figures imply that as the unavailability cost rate increases, the availability corresponding to the cost-

minimizing solution increases as well. Furthermore, Figure 11 shows the threshold values that minimize

the long-run average costs per period for the different values of the unavailability cost rate. Similar to the315

case where we varied the set-up costs, the preventive replacement threshold is set higher in case the linear

approximation is used than with the upper bound. The same holds for the opportunistic replacements, as

long as the unavailability cost rate does not exceed 140. This causes the inspection threshold ξ1 to drop to

zero for the upper bound, implying no opportunistic replacements. For the linear approximation, however,

inspections are performed every other time unit, and both preventive and opportunistic replacements are320

performed more often when the unavailability cost rate increases.
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Figure 11: Cost-minimizing threshold values for different values of the unavailability cost rate.

We remark that these sensitivity results were also observed for other values of the deterioration param-

eters αi, the failure levels Li, and the cost parameters, for i = 1, 2.

6. Conclusion

In this paper, we built on the work of Castanier et al. [7], who developed an advanced CBM policy for a325

two-unit series system with economic dependencies, where the aperiodic inspection moments are optimized

simultaneously with the critical condition levels at which maintenance is performed.

Whereas only the long-run average maintenance costs per period was considered as a performance cri-

terion in [7], we considered the long-run average availability as well. Since the deterioration level of a

component, and hence whether or not a failure has occurred, can only be observed at the inspection mo-330

ments, the amount of time that a component is unavailable cannot be measured exactly. An upper bound

is used in [7], but we approximate it more accurately by assuming a gradual, linear increase in deterioration

between two consecutive time units. Results indicate that this greatly influences the resulting optimal main-

tenance strategy. Using an upper bound, the overestimated unavailability time causes both inspections and
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preventive replacements to be performed too often, reducing the profitability of opportunistic replacements.335

A numerical sensitivity study revealed insights on the trade-off between different types of maintenance

actions. Both the inspection thresholds and the opportunistic replacement threshold should not be set too

high, as this forces the number of preventive replacements to reduce as well. At the same time, the preven-

tive replacement threshold should not be set too low, since maintenance is then performed too often, which

increases the maintenance costs. By selecting the right thresholds, our policy was shown to outperform340

simpler, classical maintenance policies. In fact, a number of these classical policies can be viewed as special

cases of our policy, making it widely applicable and of value to the maintenance literature.

Since in practice systems often contain more than two components, for which different structural re-

lations exist, a direction for future research is to extend this model to a k-out-of-N -system, i.e., the case

where a system consisting of N components functions as long as at least k components function [19]. Other345

relevant extensions of the system considered here include uncertain deterioration failure levels, dependent

deterioration processes for the different components, and the inclusion of predetermined periods during

which maintenance activities are preferably scheduled such as turn arounds. However, the current analysis

is already complex and has a considerable computing time. This is partly due to the fact that no efficient op-

timization approach exists to find the optimal threshold values, forcing us to do a full grid search. Although350

we can deal with the long computing time by dividing the calculations into different parts and running them

separately, future research could address alternative ways to analyze the stationary law as well.
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