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Abstract

There exist many inventory control studies that consider either continuous review & continuous order-
ing, or periodic review & periodic ordering. Mixtures of the two are hardly ever studied. However, the
model with periodic review and continuous ordering is highly relevant in practice, as information on the
actual inventory level is not always up to date while making ordering decisions. This paper will therefore
consider this case of periodic review and continuous ordering. Assuming zero fixed ordering costs, and al-
lowing for a non-negative lead time and a general demand process, we first consider a one-period decision
problem with no salvage cost for inventory remaining at the end of the period. In this setting we derive
a base-line optimal order path, which is described by a simple newsvendor solution with safety stocks
increasing towards the end of a review period. We then show that for the general, multi-period problem,
the optimal policy in a period is to first arrive at this path by not ordering until the excess buffer stock from
the previous review period is depleted, then follow the path for some time by continuous ordering, and
stop ordering towards the end to limit excess stocks for the next review period. An important managerial
insight is that, typically and possibly counterintuitively, no order should be placed at a review moment,
although this may seem intuitive and is also the standard assumption in periodic review models. We illus-
trate for Normally distributed demand that adhering to the optimal ordering path instead can lead to cost
reductions of 30% to 60% compared to periodic ordering, i.e. ordering exclusively at review moments.



1 Introduction

In the inventory control literature, the focus is often on two extreme cases: either periodic stock review and
periodic ordering at that same review point, or continuous stock review and continuous order possibilities.
See e.g. Axsiter (2006) and Silver et al. (1998) for discussions of such models. Mixtures of both extremes
are hardly ever studied. For continuous review and periodic ordering this is not surprising, since in a single-
item setting the optimal policy will be equal to the pure periodic review solution with review periods equal to
the time inbetween ordering points. Therefore, the sole contributions to the literature in this setting consider
multi-item models Some work has also been done on the situation of continuous review and periodic order-
ing, in the specific case where multiple products are jointly replenished from the same supplier to achieve cost
savings. Some of the first, concrete steps here were made by Goyal (1974), who introduced an optimal algo-
rithm for this problem. Since then a number of others have also studied this so-called “Joint Replenishment
Problem”. Recently, Roushdy et al. (2011) proposed an iterative method for a specific review structure and
Zhang et al. (2012) studied this problem under correlated demands.

Interestingly and perhaps surprisingly, the other mixture, periodic review and continuous ordering, has never
been studied to the best of our knowledge, at least not with “truly” continuous ordering. There have been
a number of contributions where orders are allowed at a number of predefined times during a period. Two
decades ago, Flynn and Garstka (1990) already formulated a model and according policies where orders are
allowed to be placed at the start of sub-periods of equal length during a review period. Chiang (2001) pro-
poses order splitting in a periodic review framework. That is, at the start of a period an order is placed, and
this order arrives in batches with fixed interarrival times in the current period. This method provides a holding
cost advantage, which is shown by minimizing costs under a service level constraint.

However, as mentioned before, none of the previous periodic review studies considers continuous order-
ing, i.e. potential ordering at any point in time, as we will do in this study. This will allow us to obtain
new structural results and insights into periodic review inventory systems. Moreover, whereas models with
a finite number of ordering opportunities typically have to be solved using time-consuming numerical tech-
niques such as dynamic programming, our continuous formulation leads to simple newsvendor equations that
determine the optimal ordering strategy during a review period. Interestingly, this strategy is also of a quite
different nature than those proposed and studied before: it typically does not order at review moments.

As we are the first to explore this problem, we will assume a negligible fixed ordering cost. This allows
us to study the maximum benefit of continuous over periodic ordering, and also to obtain insightful analytical
results. We do so under quite general conditions of a non-negative lead time and a general continuous demand
process. We remark that discrete demand processes can be analyzed in the same way, but the analysis and ex-
pressions are somewhat lengthier and do not provide additional insights. We therefore restrict the exposition
to continuous demand.

In line with previous periodic review studies (including those discussed above), we assume that no (par-
tial) inventory updates are done between reviews. Obviously, this is relevant for situations where substantial
effort is required to receive such updates. Despite the current technological improvements that facilitate and
automate stock counting, the assumption that inventories can be completely checked on a continuous base
is often unrealistic. Raman et al. (2001) found evidence of inventory counting inaccuracy and product mis-
placement, Yano and Lee (1995) studied product quality issues, Nahmias (1982) analyzed spoilage due to
product perishability, and Fleisch and Tellkamp (2005) performed a simulation study in which it was found
that theft has severe consequences for the optimality of inventory policies that ignore resulting inaccuracies.
Nevertheless, it is still worthwhile for future research to analyze whether partial information can be used to
further lower costs, compared to not using that information at all, as is assumed in our initial exploration and
more generally in the periodic review literature. We will return to this issue in the concluding section.

So, in our model, orders can be placed continuously and the quantity of interest is the order-up-to level



for the inventory position at each time instant. We will derive the optimal policy in two phases. In the first
phase, we assume that there is only one period and there is no salvage cost for inventory remaining at the end
of the period. Given this simplifying assumption we formulate the total cost function and minimize it with
respect to the order-up-to level at each time instant. The resulting policy will serve as the base-line for phase
2, where we consider the more realistic case with multiple periods in which remaining stock from any period
remains present in the next period. We show that the optimal policy during a review period is to (i) not order
until excess buffer stock remaining from the previous period is depleted, (ii) then apply continuous ordering
following the base-line path for some time, but (iii) stop towards the end of the period in order to limit the
excess buffer for the upcoming period.

The remainder of this paper is structured as follows. In Section 2 we derive the one-period base-line pol-
icy, and thereafter in Section 3 we adjust this policy to the general multi-period setting. In Section 4 we
provide numerical examples and compare the policy to the periodic review, periodic ordering system, and in
Section 5 we summarize our findings, discuss insights, and give concluding remarks.

2 The one-period problem: base-line model

Consider a single review period of length 7 > 0, for which at time 0 a stock level of 0 is observed. Stock
information is updated only once per review period, i.e. at the start. However, non-negative orders can be
placed at any time ¢ € [0,7) and arrive after lead time L > 0. Demand D, over a period of length r follows
a distribution characterized by the continuous cdf Fp . Holding costs per unit per time unit are # > 0 and
shortage costs per unit per time unit are p > h. Fixed ordering costs are 0, and at time 7" we can freely dispose
of remaining inventory. Please note that since information on demand (including theft, misplacement, etc.)
is not made available between reviews, demand during a review period is not subtracted from the inventory
position. That is, the inventory position at any time during a review period is defined as the starting inventory
position plus all orders placed since the start of the current review period.

Any inventory strategy is characterized by the order-up-to level &; (0 <t < T) at any time ¢ during a re-
view period. Note that since demands during a review period are not subtracted from the inventory position,
only strategies with non-decreasing order-up-to levels need to be considered. The aim is to find the values for
O, that minimize the expected cost per period. An expression for that cost is obtained based on the following
observation that holds for any ¢ € [0,T): the inventory level at time ¢ + L is equal to the inventory position at
time ¢ minus the demand in interval (0,7 + L). Please note that we need to subtract demands in the interval
(0,7 + L) and not only in the interval (z,7 + L), different from the standard analysis of continuous review in-
ventory systems (see e.g. Axsiter (2006), p. 90), since our definition of the inventory position at time ¢ does
not subtract the unknown demand in period (0,7).

So, the total expected cost per cycle is
T
/ [hE(ﬁt —Diy1)" +pE(G; *Dt+L)_] dr,
0

where (x)™ = max{0,x} and (x)~ = max{0,—x}. Obviously, the best solution for the whole period is found
by applying the optimal solution at any point during the period. Next, we therefore derive the optimal solution
for a specific point in time during the period, after which we show that the point-for-point optimal solution
indeed determines a feasible solution for the whole period as well.

For a specific value of ¢, the best value of &, is the one that minimizes

ngn{hE(ﬁt*DHL)—i_erE(ﬁt*Dt+L)_}- (D



We easily get
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and similarly
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we obtain the first order condition for (1) as
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So, the optimal order-up-to level &, for a specific time ¢ € [0,T), must satisfy
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Please note that &, is non-decreasing in ¢ for any non-negative demand process D, ;. This implies that it is
indeed feasible to achieve order-up-to level &; during the whole review period (¢ € [0,T)). Therefore, apply-
ing (2) for all ¢ € [0, T) minimizes the expected cost over the whole review period.

A common assumption in both theory and practice is that demand over some time interval follows a Normal
distribution. If we indeed assume a stationary Normal demand process with mean p and standard deviation
o per time unit, i.e. D, ~ N(ur,?r), then (2) gives

p

O,=u(t+L)+o! <P+h>o t+1L, 3)

where @ is the well-tabulated standard Normal distribution function.

We remark that the order-up-to levels in (3) may not always be non-decreasing over time for the (unrealistic)
case that the holding cost rate is much smaller than the backorder cost rate, and the coefficient of variation
o/u is large. However, rather than providing an interesting special case, this is an indication that the Nor-
mal distribution is unsuitable for estimating small quantiles of highly variable demand processes (due to the
significant probability of demand being negative). Nevertheless, assuming Normal demand has shown to be
suitable for many real-life situations, and we will also use it in our numerical investigation in Section 4.

Note from (3) that the existence of a positive lead time does not affect the nature of the problem. A larger lead
time only implies that orders need to be placed earlier and that, correspondingly, a larger safety stock is needed
at any time during a review period. Figure 1 illustrates the base-line path for the case with D, ~ N(10r,4r)
(u =10, o0 = 2), backorder costs p = 10, holding costs & = 1, lead time L = 0, and the review period normal-
ized to unity. The figure shows how the order-up-to level increases at a (slightly) diminishing rate over time,
as a combined effect in (3) of a linear increase in mean demand and a non-linear increase in variance over a
period of length r + L.
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Figure 1: Illustration of the base-line policy for Normally distributed demand with mean | = 10 and standard deviation
o = 2 per time unit (h=1, p=10, L=0)

3 The multi-period problem: general optimal policy

Consider the same set-up as in the previous section, but now under the more realistic assumption that there are
multiple review periods and all inventory remaining at the end of a review period is carried over to the next
review period. Any strategy has a maximum order-up-to-level &r. Since the base-line policy derived in the
previous section (which is optimal in the one-period problem) does not take into account the extra expected
holding costs that are incurred due to the safety stock that will be carried over to the next period, the optimal
value of &7 may be smaller than 7. This can clearly only be achieved by deviating from the base-line path
by not ordering-up-to more than a certain value S. Indeed, note that the order-up-to levels in a review period
[0,T) determine the costs in “cycle” [L,T + L), but that the costs from 7 + L onward, i.e. for future cycles,
are only affected by the maximum order-up-to level S in a review period. Therefore, we will first derive the
optimal policy for a given level of § in some period (and for some value of the starting stock level S in that
period), and then proceed to determine the unconstrained optimal policy.

So, let us first consider the best policy given a maximum order-up-to level § < &7 and starting stock level
S < S, for some period. From the convexity of the cost function in (1) for any ¢ € [0, T), it follows that costs in
the interval [L, T + L) are minimized by staying as close to the base-line policy as possible at any time during
the period [0, T) It is easy to see that this is achieved as follows. First of all, order at the start of a period such
that the path &, is reached as soon as possible. If § < & this is achieved immediately at time O by ordering
up to O at that time. If S > &, then no orders are placed until the first time that a point a is reached where
0, = S. This yields the starting inventory position §' = max{S, Jy}. Subsequently, orders at time 7 must be
placed according to &, until time b where &), = S, at which point ordering should be stopped and the next
inventory review must be awaited.

So, given S and S such that § < § < 07, the optimal policy in a period is to set
S 0<rel0,a)
ﬁ[ — ﬁt t e [a,b) (4)
S telbT),



where

a solves 0,=S5, and

b solves Op=3S

Observe that if § < 5’0, then @ = 0. An illustration of such a policy can be found in Figure 3 of Section 4.
It is obvious from the above analysis (and Figure 3) that the optimal level, §, at which to stop ordering is
independent of the starting stock level, S. The latter only affects the time it takes to reach the base-line path.
This implies that the optimal policy is stationary in that it applies the same maximum order-up-to level for
each period, independent of the starting stock level.

What remains is to find the optimal value for S. From the above discussion, it follows that the cost of the
optimal policy for a period, given an initial inventory position S, is given by

b
TC(S,S) = h / E(S—Dyr) " dr + / E(0; —D; ) Tdr + / E(S—D, )" dt
b

b
+p /E(S_D[+L)7dt+/E(ﬁ~[ _D[+L)7dt+/E(S_D[+L)7dt 5

This total cost function can be rewritten as

a S b 6 T §
TC(S.5) = h / / Fp,., (x)dxdr + / / Fp,., (x)dxdr + / / Fp,., (x)dxdr
0 “e a “oo b —oo
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S a g, b S

Using that: (i) the stock at the end of a period is equal to S minus the demand in that period, and (ii) one
orders up to O at the start of a period, we get the expected cost per period as

ETC(S) = |[TC(S—x,S) fp,(x)dx

St

Oy

= / TC S X S)fDT( )dX+P(DT >85— ﬁo)TC(ﬁ(), )
0
By minimizing this expected cost, the optimal value S can be determined numerically for any demand process.

4 Sensitivity analysis and comparison with pure periodic review

4.1 Numerical examples and sensitivity analysis

The policy derived in the previous section can be applied to any continuous demand process. In this sec-
tion, we consider some examples with Normally distributed demand D, ~ N(ur, 62r), zero lead time, and a
review period of unit length. For every example, the expected total cost function is approached numerically
by replacing the integrals with variable-dependent bounds by their finite sum equivalents of sufficient length.

Figure 2 shows the expected cycle costs as a function of S for the earlier considered case with u = 10,
6=2h=1, p=10,and L =0. As can be seen, the costs are convex in S and a minimum is achieved
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Figure 2: Base case example: Derivation of the optimal S for Normally distributed demand with mean 1 = 10 and
standard deviation ¢ = 2 per time unit (p =10, h=1, L=0)

at S ~ 11.44. Recall that the optimal base-line policy orders up to 12.67. So, the optimal policy is to stop
ordering in the last phase of the review period, after order-up-to level 11.44 is reached. As this level is still
above the mean demand of 10 per period, there typically still is (excess) stock left at the start of a period, im-
plying an initial phase of the review period without ordering. This leaves a phase in between with continuous
ordering up to an increasing level. This is illustrated in Figure 3a. In this particular cycle, the observed stock
level at ¢ = 0 is S = 1.44, which is the expected value of S, given S = 11.44 and u = 10. This figure shows the
typical three-part structure of the optimal ordering during a review period, with a horizontal start, a slightly
decreasing order speed along the base-line in the middle, and an ordering stop at a level S. Figure 3b shows
the corresponding expected inventory level during the cycle. The expected stock first decreases linearly with
slope —u = —10, after which ordering is started and a safety stock is built up. Finally, orders are halted and
the expected stock level decreases linearly again.

Now that we have seen a full-fledged example of our inventory policy, an interesting question is how it
reacts to parameter changes. In Figure 4a and Figure 4b we increase U (in two steps), ceteris paribus. From
(3) we know that an increase in U leaves the optimal safety stock levels for the base-line policy unchanged.
Therefore, the maximum order-up-to level & increases from 12.7 for p = 10 to 27.7 for g = 25 and 52.7
for u = 50. Figures 4a and 4b show that the optimal maximum order-up-to level converges towards & as
U increases. This is because a higher mean demand rate implies that excess safety stocks, if observed at
the next review, can be depleted at a faster rate and are therefore less costly. Next we analyze the response
of the policy to an increase in demand uncertainty. Specifically, we increase ¢ to 5. See Figure 4c. The
base-line policy now orders up to 16.68, whereas the optimal order stop level is § ~ 13.8. Hence, an increase
in standard deviation of 150% has led to an increase in the base-line order-up-to level of over 30%, whereas
the optimal order-up-to level increases with approximately 20%. That is, if demand uncertainty increases,
then the build-up of safety stock increases in optimum, but the relative deviation from the base-line policy
increases as well.

Instead of altering distribution parameters, we can also study changes in cost parameters. The drawback
of the base-line policy is mainly due to neglection of future holding costs. Let us consider the optimal or-
der path if backordering becomes less costly relative to holding costs. In Figure 4d, the backorder cost p is
decreased from 10 to 4. The base-line order level is now decreased to 11.68, whereas the optimal S is now
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Figure 3: Base case example: order path and expected stock path for Normally distributed demand with mean [l =
10 and standard deviation 6 = 2 per time unit (p =10, h=1, L =0), observed S = 1.44 and corresponding optimal

S=11.44

S ~ 10.45. Hence, compared to the initial case, less safety stock is built up, since a shortage is less expensive
and holding costs have an effect both in the current and in the next period.
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4.2 Cost savings of continuous over periodic ordering

As discussed in Section 1, most inventory systems in the literature assume either periodic review with pe-
riodic ordering, or continuous review with continuous ordering. Under zero ordering costs and with a lead
time equal to O, the latter will always provide zero cycle costs, as stock can be kept at zero and demands
can be satisfied immediately. So, the cost saving of the optimal continuous ordering policy under periodic
review compared to the optimal periodic ordering policy under periodic review also indicates to what extent
continuous ordering can compensate for the cost disadvantage of periodic review.



We can derive the optimal order-up-to level S, for periodic ordering by noting that total cycle costs are
given by

T T

h / E(S, —Dyy)tdt+p / E(S, — D) dr
0 0

T S T

— h / / Fp,., (¥)dxdr + p / 7 (1= Fp,., (x))dxdr,
0 —oo 0 Sp

and so the optimal order-up-to level must satisfy

T

T
[ Fo (St =p [11=Fo, (3,
0 0

For the base case, this gives S, = 9.6 and an expected cycle cost of 5.9. Note that S, is below the expected
demand during a review period, despite the 10 to 1 ratio of backorder cost rate vs. holding cost rate. The
reason is that (safety) stocks arrive at the start of a period whereas backorders occur at the end of a period,
making it costly to prevent (possible) backorders. Observe that our continuous policy &; orders more in total,
but the spreading of the orders reduces holding costs, such that total costs are only 2.56, which is a reduction
by 57%. For o = 5, the periodic maximum order-up-to level is S, = 11.7 and the expected cycle cost is 9.3.
Figure 5 shows again that 0, orders more in total, but total costs are only 6.45, a reduction by 31%. Hence,
a substantial improvement can be made by considering continuous order possibilities, but the improvement
decreases in the variance of the demand distribution. With increasing demand variance, it becomes more
difficult to “predict” demand during a review period and respond with the best continuous ordering plan.

S Summary & conclusion

In this paper we have presented an optimal inventory policy under periodic review with continuous ordering,
for any continuous demand distribution, for any non-negative, deterministic lead time, and for zero fixed or-
dering costs. The implied order paths lead to expected inventory paths consisting of two downward sloping
linear parts where no orders are placed, separated by a middle part in which a safety stock is built up at a
diminishing rate. An important insight is that typically no order is placed at the start of a period. Instead,
excess safety stocks from the previous period are likely to remain. Periodic review ordering policies in the
literature do order at a review and, in fact, typically only at a review. This makes them very ineffective, which
was confirmed by substantial cost savings of continuous ordering from our numerical examples.

Another important observation from the above described ordering policy is that the build-up of safety stock
is not continued until the end of a period. Although the uncertainty surrounding demand since the last review
does continue to increase throughout the period, excess safety stocks increase costs in the first part of the next
review period. For this reason, no ordering takes place during the last part of a review period.

Given zero ordering costs, the presented policy is applicable and optimal under the quite general conditions
mentioned before. The assumption of continuous demand can be relaxed without severe adaptations, such
that also discrete alternatives such as the often used Poisson distribution can be studied. Non-deterministic
lead times can be approximately dealt with in the same manner as has been suggested for other inventory
control systems (see e.g. Axsiter (2011)), by increasing the demand variance during the lead time and (part
of the) review time. Exact analysis of inventory control models with stochastic lead times is known to be very
complex, especially if order crossing is allowed.

As follows from our comparisons, in a situation without fixed ordering costs, it can be very lucrative to



apply continuous ordering during part of a review period. However, when ordering costs are strictly positive,
then such a policy cannot be optimal anymore. An adjusted policy that limits the number of orders placed
is needed. This could for instance be achieved by considering more general order level, order-up-to level
policies, with both levels changing during a review period. In doing such further research, results on order
splitting (e.g. by Chiang (2001)) should be taken into account. However, as the term suggests, those models
still assume that orders are placed at reviews, and ordering opportunities are also typically predetermined,
leaving many opportunities for future research.

Our sensitivity analysis showed that the expected costs incurred by the policy increase when the degree of
randomness in demand (parametered by ¢) increases. This suggests that further large cost reductions can be
accomplished by integrating (partial) information on demand during the review period into the model in order
to reduce the variance of the remaining, random part. One obvious model is to assume that some but not all
demands are recorded, e.g. customer orders are recorded, but theft, misplacement, etc. are not. Such models
provide lower bounds for demand. Similarly, upper bounds can be taken into account. For example, issues
like theft cannot have a larger effect than the current stock at hand. Any method that reduces the uncertainty
in demand will lead to inventory cost reductions. Recall that the ideal situation of complete continuous review
with continuous ordering (and under zero lead time) leads to zero costs. Cost improvements of 30 to 60%
are achievable by using continuous ordering instead of periodic ordering under periodic review. Timing of
ordering is essential in order to realise such a huge cost improvement. This paper shows that it is generally
better to postpone ordering until some time after the review moment and not order at the review moment
itself. Thereby, it makes a fundamental first step in bridging the gap between inefficient periodic review and
periodic ordering policies, and often unrealistic continuous total review and continuous ordering policies.
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