

university of groningen

 faculty of economics and business

### 13002-EEF

The relation between stature and long bone length in the Roman Empire

Geertje Klein Goldewijk Jan Jacobs



SOM is the research institute of the Faculty of Economics & Business at the University of Groningen. SOM has six programmes:

- Economics, Econometrics and Finance
  Global Economics & Management
  Human Resource Management & Organizational Behaviour
- Innovation & Organization
- Marketing
- Operations Management & Operations Research

Research Institute SOM Faculty of Economics & Business University of Groningen

Visiting address: Nettelbosje 2 9747 AE Groningen The Netherlands

Postal address: P.O. Box 800 9700 AV Groningen The Netherlands

T +31 50 363 7068/3815

www.rug.nl/feb/research

## The relation between stature and long bone length in the Roman Empire

Geertje Klein Goldewijk University of Groningen geertjekleingoldewijk@gmail.com

university of groningen

Jan Jacobs University of Groningen

No.

#### The relation between stature and long bone length in the Roman Empire

Geertje M. Klein Goldewijk, Groningen Institute of Archaeology, University of Groningen [geertjekleingoldewijk@gmail.com]

Jan P.A.M. Jacobs, Faculty of Economics and Business, University of Groningen

#### Version February 2013

#### Abstract

Stature is increasingly popular among economic historians as a proxy for (biological) standard of living. Recently, researchers have started branching out from written sources to the study of stature from skeletal remains. Current methods for the reconstruction of stature from the skeleton implicitly assume fixed body proportions. We have tested these assumptions for a database containing over 10,000 individuals from the Roman Empire. As it turns out, they are false: the ratio of the length of the thigh bone to the length of the other long bones is significantly different from those implied in the most popular stature reconstruction methods. Therefore, we recommend deriving a proxy for living standards from long bone length instead of reconstructed stature.

Key words: body proportions, living standards, long bones, Roman Empire, stature.

Acknowledgements: This research has been funded by NWO, Toptalent grant nr. 021.001.088. We thank Wim Jongman, Gerard Kuper, and Vincent Tassenaar for their help and comments.

#### 1. Introduction

Stature is increasingly popular among economic historians as a proxy for (biological) standard of living (Steckel 2009). The better a child is fed, the taller it can grow. That not only depends upon how much it eats, but also on how much it needs: the harder a child has to work, the more fuel its muscles need; the more pathogens it encounters, the more of an effort it takes to ward them off; the more poorly it is housed and clad, the more energy it has to spend to keep warm. If a child is short on nutrients, it has to cut on growth. Its low nutritional status is reflected in a small stature. On the level of the individual, genes play an important role, but on a group level the genetic influences cancel each other out. Average stature thus is related to the quality and quantity of food, clothing, housing, disease and work load. That makes it a good proxy for overall living standards.

In economic history, the vast majority of stature research is based on written sources on height, such as conscription lists. However, written data is only available for more recent periods. Data from human skeletal remains can supplement the written sources. Koepke and Baten (2005) study the development of living standards in Europe from the first to the eighteenth century CE using stature from skeletons. Steckel collects several skeletal indicators of health, including stature, in an effort to elucidate the development of living standards in Europe and the America's in the last ten thousand years (see Steckel and Rose, 2002 for some of the first results). Koca Özer et al. (2011) and De Beer (2004) use skeletal evidence to study the secular change in height in Turkey and the Netherlands, respectively.

For our research into living standards in the Roman Empire, we collected published and unpublished osteological reports on human skeletal remains found in the Roman Empire, and dated between 500 BCE and 750 CE. Stature reconstruction is a standard part of osteological analysis, and most skeletal reports contain some stature figures. These figures, however, have been produced using a wide array of stature reconstruction methods, and they cannot be lumped together just like that.

In this article, we will test the ten most popular methods for the reconstruction of stature from the skeleton. We will calculate the long bone length proportions implied by these methods, and test these against the long bone lengths proportions in Roman period skeletons. As a result, we will propose an alternative approach: we advise not to attempt the reconstruction of stature, but to study the development of long bone length instead.

The remainder of this article is structured as follows. Section 2 discusses the extant stature reconstruction methods. Section 3 introduces our database, and the type of analysis that we use. Section 4 presents our results, the implications of which are discussed in section 5. Section 6 contains a short conclusion.

#### 2. Reconstruction of stature from the skeleton

Most skeletons that are found cannot be measured from head to heel. They are incomplete, or the bones are out of position. Fortunately, stature can be reconstructed from the long bones, the large bones of the limbs. In the nineteenth century, scientists already assumed that there is a relation between the length of the body and that of the limbs. Rollet (1888) measured 100 dissecting room cadavers from Lyon, and calculated

the average length of each long bone in men and women of a similar stature. Pearson (1899) performed regression analyses on Rollet's data, and came up with two sets of stature reconstruction formulae, one for men and one for women, which can be used to calculate stature from the length of a single long bone (see table 1).

Pearson's work set the standard for twentieth century studies into the relation between long bone length and stature. All perform regression analyses, albeit on data from different populations: Breitinger (1937) measured male students and athletes living in Germany in the 1920's; Bach (1965) provided the matching formulae for females from women living in Jena in the 1960's; Eliakis et al. (1966) studied university dissecting room cadavers from Athens, Telkkä (1950) studied those from Helsinki; Olivier wrote a series of articles on western Europeans deported in the Second World War (Olivier, 1963; Olivier and Tissier, 1975; Olivier et al., 1978); Dupertuis and Hadden (1951) published different sets of formulae for whites and blacks, based on an early twentieth century collection of skeletons from Ohio; Trotter and Gleser (1952, 1958) complemented that dataset with American soldiers killed in the Pacific during the Second World War and the Korean War.

All these regression studies come up with different sets of formulae. And the choice of formula has a significant effect on the resulting stature figure. For example, the average length of the male thigh bone or femur in our database is 450 millimeter. This yields a predicted stature between 165.3 cm (Trotter and Gleser, 1952, for blacks) and 172.8 cm (Eliakis et al., 1966). In part, this is due to differences in measurement methodology: some measure the bones when they are 'fresh', others wait for them to dry; some take maximum bone length, others prefer the length to be measured in the

anatomical position; some researchers have stature measurements taken during life, others have to make do with cadavers lying on a table or suspended from the ceiling. However, when this diversity is accounted for, the discrepancy remains more than 5 centimeters.

Physical anthropologists soon remarked upon these differences in body proportions. They ascribed it to genes, and they devised separate sets of formulae for different peoples ('races'). More recently, they realized that even when the genetic composition of a population stays more or less the same, body proportions can still change. The formulae that Trotter and Gleser published on Second World War victims (Trotter and Gleser, 1952) proved not to be valid anymore for those killed during the Korean War, six to ten years later (Trotter and Gleser, 1958). 'Stature and its relationship to long bone length are in a state of flux', Trotter and Gleser (1958, p. 122) conclude, and 'equations for estimation of stature should be derived anew at opportune intervals.' Apparently, body proportions do not only depend upon genes, but also on the environment. Stature reconstruction formulae can therefore only be applied to the population for which they were calculated, or one that is very similar in its genetic composition and its way of life.

As all stature reconstruction methods are based upon late nineteenth or even twentieth century populations, it is hard to pick a method for a population from before that period. In the past, physical anthropologists working with archaeological samples simply followed national tradition: the Germans used the formulae by Breitinger (1937) and Bach (1965); the French employed the tables of Manouvrier (1892, 1893) (based on a subset of the Rollet (1888) data); the Americans turned to the publications of

Trotter and Gleser (1952,1958). Nowadays, more and more physical anthropologists find this praxis unsatisfactory. They emphasize that the stature figures they provide are nothing but a rough approximation of actual body size. They deplore the lack of comparability of estimates made with different methods, and they apply various sets of formulae side-by-side (e.g. Becker, 1999; Lazer, 2009; Rühli et al., 2010). As 'presentday formulae may introduce a systematic bias in estimates of stature of individuals of past generations' (Trotter and Gleser, 1958, p. 116), we must make sure to use the right set of formulae for the Roman period.

#### 3. Material and method

For our study of living standards in the Roman Empire, we collected published and unpublished osteological reports on human skeletal remains found in the Roman Empire, and dated between 500 BCE and 750 CE (Klein Goldewijk, forthcoming). The Roman stature database contains over 10,000 adult men and women born between 500 BCE and 750 CE and buried in the territory of the Roman Empire at its largest extent. It includes all prevailing length measures of all six long bones, over 35,000 in total (see table 2).

We do not know the stature of the men and women in our database. We only know the length of one or more of their long bones. Therefore, we have no way to find out which method renders the correct body heights. We can only search for a method that provides us with a proxy that is internally consistent: that always provides us with the same stature figure, regardless of the long bone that the estimate is based upon.

we need a stature reconstruction method that fits the body proportions of the skeletons in our Roman sample population.

As the femur is the most numerous long bone, we have made it the yardstick against which the other bones are judged. We estimate the relation between femur length and the length of the other five long bones in our database, and we compare that to the long bone length proportions predicted by the extant stature reconstruction methods.

Let us explain that in more detail with the Pearson (1899) formulae that we introduced above. Pearson found the following relation between male stature and femur length: *stature* = 81.306 + 1.880 \* femur. He also found an association between male stature and humerus length: *stature* = 70.641 + 2.894 \* humerus. In both formulae the part before the equals sign is the same (*stature*). Therefore, we can equate the two formulae to each other: 81.306 + 1.880 \* femur = 70.641 + 2.894 \* humerus. This boils down to: *femur* = -5.673 + 1.539 \* humerus, which we can compare to the ratio of femur to humerus length in our database.

We estimate the long bone length proportions in the Roman stature database using a standard (OLS) linear regression analysis. We run the regressions for men and women independently, as most stature reconstruction methods have separate sets of formulae for men and women, and as there are important biological reasons to suspect that body proportions vary by sex. We assume that the relation between the lengths of two bones is linear, in line with the stature reconstruction methods that we are testing. Hence, we choose to ignore the fact that a few of the estimated models fail to pass the Ramsey RESET test, suggesting that a quadratic or an exponential model might have a

better fit (see tables 3, last column). We tested for heteroskedasticity using White's heteroskedasticity test (see tables 3, penultimate column). If homoskedasticity is rejected, we adjust the standard deviations accordingly. We calculate the 95% confidence interval for each parameter, and compare the resulting values with those from the stature reconstruction formulae.<sup>1</sup> When both the constant and the slope parameter from a stature reconstruction method fall within the 95% confidence interval formulae.

We share some of the worries expressed by Sjøvold (1990) about the use of OLS regression in stature reconstruction research. However, we feel that his alternative, Reduced Major Axis analysis, does not solve the endogeneity problem. Instead, we have done a much more extreme robustness check: we ran all regressions described in this article 'the other way round', i.e. with the femur on the right side of the equation.

We test the ten stature reconstruction methods that are most popular among physical anthropologists studying Roman period skeletons. We restrict ourselves to the formulae for 'whites', as the inhabitants of the Roman Empire, however genetically diverse, can for the large majority be expected to be 'Caucasian'. We make an exception for Trotter and Gleser's formulae for blacks, as they perform well in previous studies into stature reconstruction in Roman period skeletons (Becker, 1999; Giannecchini and Moggi-Cecchi, 2008). We also include the formulae for blacks by Dupertuis and Hadden (1951), as their sample population overlaps with the one used by Trotter and Gleser (1952).

<sup>&</sup>lt;sup>1</sup> The 95% confidence intervals of the constant and slope parameters of the extant stature reconstruction methods cannot be computed, because the relevant statistics have not been published.

#### 4. Results

The results of the linear regression analyses are reported in table 3a and 3b. For example, for the men in our database, the relation between femur and humerus length turned out to be:

(1) femur = 73.239 + 1.164 \* humerus (7.005) (0.022)

> n = 1398  $R^2$  = .683 White heteroskedasticity: p = .038

Under the parameters, between parentheses, is the standard error of the estimate. As homoskedasticity is rejected at the 5% level (White: p = .038), we use robust Whiteadjusted standard errors, which usually are somewhat larger than the regular ones. These standard errors are used to compute the confidence interval for each of the parameters. As the number of observations is large enough to assume normality, we multiply them with 1.96 to arrive at the 95% confidence interval (see table 4a):

(2) *femur* = 59.509 to 86.969 + 1.121 to 1.207 \* *humerus* 

Recall that the predicted ratio of femur to humerus length implicit in Pearson's set of formulae for males is:

#### (3) femur = -5.673 + 1.539 \* humerus

Both the constant and the slope parameter fall outside the confidence intervals of equation (2). Thus, the Roman men in our database do not fit Pearson's (1988) stature reconstruction formulae for femur and humerus.

This way, we have tested all ten stature reconstruction formulae, for all bone measurements. The results can be found in table 4. The upper and lower boundaries of the 95% confidence intervals are in the first and last columns of tables 4. The middle columns contain the values derived from the stature reconstruction formulae. Those that fall within the confidence interval are printed in bold type. For the men (table 4.a), they do so only occasionally; for the women (table 4.b), they are more often correct. When both the constant and the slope parameter from a stature reconstruction method fall within the 95% confidence interval from our database, we tested both parameters together using the Wald test. In all cases, the parameter values were significantly different from those for the Roman stature database (p = .000). Thus, not a single stature reconstruction method fits the Roman bone length data.

The results of our robustness check (see section 3) are similar: the body proportions implicit in the stature reconstruction formulae do not fit those in the Roman stature database (see table 5 and 6). There are two exceptions: the ratio between male femur length nr. 2 and tibia length nr. 1b as predicted by Pearson, and the ratio between female femur length nr. 2 and tibia length nr. 1a, also by Pearson. However, as all other long bone length proportions do not match, Pearson still does not make a suitable stature reconstruction method.

#### 5. Discussion

Several physical anthropologists have tried to determine which stature reconstruction method serves best for a particular skeletal population. Two studies concern the Roman period. Becker (1999) measured long bone length and body length *in situ* in fifth to third century BCE graves in Satricum, Italy. He concludes that Trotter and Gleser's (1952) formulae for blacks are best. Unfortunately, only twenty of the 179 burials were well enough preserved to allow measurements being taken.<sup>2</sup> Preservation was too poor for regular sex determination, so that Becker had to rely on odontometrics and bone robusticity. While Becker must be commended for working with such problematic material, we fear that the small sample size, the difficulties in taking some of the measurements, and the uncertainty of some of the sex assessments weaken his argument. Besides, as Becker is well aware of, his study pertains to a single cemetery, so its validity is quite limited.

The second study has a wider geographical and temporal scope. Giannecchini and Moggi-Cecchi (2008) sexed and measured over one thousand Iron Age, Roman and Medieval skeletons from central Italy. They selected all skeletons with at least one femur, tibia, humerus and radius, and then for each individual calculated stature four times, i.e., from each bone separately. The closer the four stature estimates are to each other, the better they believe the stature reconstruction method to be. They recommend using Pearson (1899), or Trotter and Gleser's (1952) formulae for blacks. Unfortunately, the sample sizes of Giannecchini and Moggi-Cecchi are fairly small. Only 179 male and 132 female skeletons still have the four long bones required to qualify for the test, which

<sup>&</sup>lt;sup>2</sup> Becker (1999) himself writes that his sample size is twenty four, but in four skeletons body length has been measured from field drawings made by archaeology students (Becker (1999), p. 237, table 1), which cannot be too reliable.

seems a bit meager for a time span of almost 2,500 years. The sample size for the Roman period (defined by them as 500 BC to 500 BCE), is 50 men and 38 women only. Second, Giannecchini and Moggi-Cecchi only provide a ranking of stature reconstruction methods, not an absolute judgment: they say which method performs best, but they do not say if the best is also good enough.

We have tested the ten most popular stature reconstruction methods for a database of over 10,000 skeletons from all over the Roman Empire. The results are unequivocal: the long bone length proportions in the Roman stature database do not fit those implicit in the stature reconstruction formulae. Therefore, we feel it is best not to try and reconstruct Roman body length at all, and stick to the information that we have and that we can rely on: the raw data, the long bone lengths.

We suspect similar problems with the reconstruction of stature in other premodern skeletal populations. Stature reconstruction formulae are specific for a certain time and place. They should only be applied to the population they were calibrated for, or one that is much alike. It will not do to support the choice for a set of reconstruction formulae for skeletons from the first to the eighteenth century CE with a study pertaining to the Stone Age, as Koepke and Baten (2005) do, referring to Formicola (1993). If the stature reconstruction method does not fit the population that it is used upon, the resulting figures may be off, seriously affecting conclusions about height.

Long bone length is not only a more reliable indicator of living standards than reconstructed stature, it may be a more sensitive one as well. In times of need the development of the trunk, containing most vital organs, may be privileged over that of the limbs. Living conditions may therefore have a stronger effect on long bone length

than on body length. Indeed, in the vast majority of stature reconstruction formulae the slope parameter is larger than one, suggesting that within a single population, long bone length varies more than stature does. In the one case where we can compare a single population diachronically, the studies of Trotter and Gleser on American soldiers killed in the Second World War (Trotter and Gleser, 1952) and in the Korean War (Trotter and Gleser, 1958), average stature increases, but the majority of the slope parameters decreases over time (see also Trotter and Gleser, 1958, figure 1 p. 94 and figure 2 p. 96). This suggests that long bone length has gone up more than total body length, and that long bone length is a more sensitive indicator of the change in living standards.

Bone length is harder to collect than reconstructed stature, as the raw data often is not included in the published reports, and physical anthropologists sometimes are reluctant to share their hard-earned data, or the original records have long been lost. Still, a smaller, good-quality database is to be preferred to a larger one filled with erroneous information. What we lose in sample size, we gain in the reliability of our data.

#### 6. Conclusion

Stature normally cannot be measured from the skeleton in the grave. It must be reconstructed from the length of the long bones, but the methods with which that can be done are specific for a certain time and place. The most popular stature reconstruction methods are based on (early-)modern populations. This paper has shown that existing stature reconstruction methods do not fit one particular pre-modern population, that of the Roman Empire. We therefore recommend using long bone length rather than reconstructed stature as (a base for) an indicator of living standards.

#### Bibliography

- Bach, H., 1965. Zur Berechnung der Körperhohe aus den langen Gliedmassenknochen weiblicher Skelette. *Anthropologischer Anzeiger* 29, 12-21.
- Becker, M.J., 1999. Calculating stature from *in situ* measurements of skeletons and from long bone lengths: an historical perspective leading to a test of Formicola's hypothesis at 5<sup>th</sup> century BCE Satricum, Lazio, Italy. Rivista di Antropologia (Roma) 77, 225-247.
- de Beer, H., 2004. Observations on the history of Dutch physical stature from the late-Middle Ages to the present. Economics and Human Biology 2, 45-55.
- Breitinger, E., 1937. Zur Berechnung der Körperhöhe aus den langen Gliedmassenknochen. Anthropologischer Anzeiger 14, 249-274.
- Dupertuis, C. W., Hadden, J.A., 1951. On the reconstruction of stature from the long bones. American Journal of Physical Anthropology 9, 15-54.
- Eliakis, C., Eliakis, C.E., Iordanidis, P., 1966. Sur la determination de la taille d'après la mensuration des os longs. Annales de Médicine Legale 46, 403-421.
- Formicola, V., 1993. Stature reconstruction from long bones in ancient population samples: An approach to the problem of its reliability. American Journal of Physical Anthropology 90, 351-358.
- Fully, G., Pineau, H., 1960. Détermination de la stature au moyen du squelette. Annales de Médecine Légale 40, 145-154.

- Giannecchini, M., Moggi-Cecchi, J., 2008. Stature in archaeological samples from Central Italy: methodological issues and diachronic changes. American Journal of Physical Anthropology 135, 284-292.
- Jantz, R.L., Hunt, D.R., Meadows, L., 1995. The measure and mismeasure of the tibia: implications for stature estimation', Journal of Forensic Sciences 40, 758-761.
- Klein Goldewijk, G.M., forthcoming. Stature and the standard of living in the Roman Empire, PhD thesis, University of Groningen.
- Koca Özer, B., Sağir, M., Özer, İ., 2011. Secular changes in the height of the inhabitants of Anatolia (Turkey) from the 10<sup>th</sup> millennium B.C. to the 20<sup>th</sup> century A.D.. Economics and Human Biology 9, 211-219.
- Koepke, N., Baten, J., 2005. The biological standard of living in Europe during the last two millennia. European Review of Economic History 9, 61-95.

Lazer, E., 2009. Resurrecting Pompeii. London: Routledge.

- Manouvrier, L., 1892. Détermination de la taille d'après les grand os des membres. Revue Mensuelle de l'École d'Anthropologie de Paris 2, 227-233.
- Manouvrier, L., 1893. La détermination de la taille d´après les grand os des membres. Mémoires de la Société d´Anthropologie de Paris, 2<sup>nd</sup> series, 4, 347-402.
- Martin, R., 1928. Lehrbuch der Anthropologie in systematischer Darstellung, mit besonderer Berücksichtigung der anthropologischen Methoden. Jena: Gustav Fischer.
- Olivier, G., Aaron, C., Fully, G., Tissier, G., 1978. New estimations of stature and cranial capacity in modern man. Journal of Human Evolution 7, 513-518.

Pearson, K., 1899. Mathematical contributions to the theory of evolution: V. On the reconstruction of stature of prehistoric races. Philosophical Transactions of the Royal Society in London, series A, 192, 169-244.

Rollet, E., 1888. De la mensuration des os longs des membres. Lyon: Storck.

- Selinsky, P., 2004. An osteological analysis of human skeletal material from Gordion, Turkey, MA thesis at the Department of Anthropology, University of
- Pennsylvania. Sjøvold, T., 1990. Estimation of stature from long bones utilizing the line of organic correlation. Human Evolution 5, 431–447.
- Steckel, R.H., 2009. Heights and human welfare: recent developments and new directions. Explorations in Economic History 45, 1-23.
- Steckel, R.H., Richard, H., Rose, J.C., 2002. The backbone of history: health and nutrition in the Western Hemisphere. Cambridge: Cambridge University Press.
- Telkkä, A., 1950. On the prediction of human stature from the long bones. Acta Anatomica 9, 103-117.
- Trotter, M., Gleser, G.C., 1952. Estimation of stature from long bones of American whites and negroes. American Journal of Physical Anthropology 10, 463-514.
- Trotter, M., Gleser, G.C., 1958. A re-evaluation of estimation of stature based on measurements taken during life and long bones after death. American Journal of Physical Anthropology 16, 79-124.

 Table 1 An example of a stature reconstruction method: the formulae by Pearson (1899)

| men (n = 50)                                                                                              | women (n = 50)                                                                                             |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| stature = 81.306 +1.880 * femur<br>stature = 78.664 + 2.376 * tibia<br>stature = 70.641 + 2.894 * humerus | stature = 72.844 + 1.945 * femur<br>stature = 74.774 + 2.352 * tibia<br>stature = 71.475 + 2.754 * humerus |
| stature = 85.925 + 3.271 * radius                                                                         | stature = 81.224 + 3.343 * radius                                                                          |

Notes:

a. Formulae for the reconstruction of living stature from dry bones, Pearson (1899), 196.b. All bone measures are nr. 1 measurements as specified by Martin (1928).

|                       |               |                            | men   | women |
|-----------------------|---------------|----------------------------|-------|-------|
| number of individuals |               | minimum <sup>a</sup>       | 5745  | 4261  |
|                       |               | maximum                    | 7879  | 5926  |
|                       | femur         | measure nr. 1 <sup>b</sup> | 4198  | 3164  |
|                       |               | measure nr. 2              | 1789  | 1306  |
| ones                  | tibia         | measure nr. 1              | 3522  | 2537  |
| eg þc                 |               | measure nr. 1a             | 219   | 74    |
| -                     |               | measure nr. 1b             | 738   | 585   |
|                       | fibula        | measure nr. 1              | 746   | 546   |
|                       | humerus       | measure nr. 1              | 3564  | 2554  |
|                       |               | measure nr. 2              | 715   | 485   |
| es                    | radius        | measure nr. 1              | 2922  | 2121  |
| lod                   |               | measure nr. 1b             | 228   | 159   |
| arm                   |               | measure nr. 2              | 337   | 227   |
|                       | ulna          | measure nr. 1              | 1928  | 1316  |
|                       |               | measure nr. 2              | 304   | 225   |
| sum of                | bone measures |                            | 21283 | 15339 |

Table 2 Number of observations in the Roman stature database

Notes:

- a. We do not know how many individuals the database contains exactly, as some publications only mention the average long bone length of a group of skeletons. If we find an average value for, say, four female left femora and another average value for three female left humeri, we do not know whether these three humeri belong to women who also had a femur to be measured, or if they are three different women entirely. Unless the physical anthropologists mention the number of individuals separately, sample size could be anywere between four and seven.
- b. Bone measure numbers refer to Martin (1928).

|                            | consta                | nt                | slope                 |                   |      | model |                           |                   |
|----------------------------|-----------------------|-------------------|-----------------------|-------------------|------|-------|---------------------------|-------------------|
|                            |                       |                   |                       |                   |      |       |                           | Ramsey            |
|                            |                       |                   |                       |                   |      | adj.  | hetero-                   | RESET             |
| bones <sup>ª</sup>         | estimate <sup>b</sup> | S.E. <sup>d</sup> | estimate <sup>b</sup> | S.E. <sup>d</sup> | n    | $R^2$ | skedasticity <sup>c</sup> | test <sup>e</sup> |
| fem1 and tib1 <sup>d</sup> | 117.827               | 6.220             | .913                  | .017              | 1349 | .737  | .000                      | .794              |
| fem1 and tib1a             | 67.477                | 19.443            | 1.036                 | .053              | 96   | .801  | .219                      | .649              |
| fem1 and tib1b             | 111.806               | 9.764             | .935                  | .027              | 432  | .739  | .225                      | .160              |
| fem1 and fib1              | 118.491               | 14.228            | .931                  | .040              | 343  | .698  | .036                      | .791              |
| fem1 and hum1              | 73.239                | 7.005             | 1.164                 | .022              | 1398 | .683  | .038                      | .875              |
| fem1 and hum2              | 59.887                | 12.709            | 1.226                 | .040              | 571  | .681  | .007                      | .224              |
| fem1 and rad1              | 122.190               | 8.183             | 1.341                 | .033              | 1127 | .633  | .000                      | .087              |
| fem1 and rad1b             | 66.256                | 21.097            | 1.592                 | .085              | 153  | .695  | .529                      | .613              |
| fem1 and rad2              | 88.629                | 19.855            | 1.573                 | .084              | 171  | .670  | .778                      | .934              |
| fem1 and uln1              | 105.358               | 10.187            | 1.302                 | .038              | 762  | .606  | .588                      | .057              |
| fem1 and uln2              | 136.904               | 24.022            | 1.347                 | .100              | 160  | .529  | .003                      | .014              |
| fem2 and tib1              | 110.757               | 8.374             | .923                  | .023              | 751  | .733  | .041                      | .327              |
| fem2 and tib1a             | 80.733                | 18.229            | .991                  | .049              | 112  | .783  | .588                      | .559              |
| fem2 and tib1b             | 114.688               | 10.699            | .916                  | .029              | 375  | .723  | .121                      | .253              |
| fem2 and fib1              | 123.409               | 17.208            | .908                  | .047              | 223  | .622  | .166                      | .908              |
| fem2 and hum1              | 76.698                | 9.496             | 1.148                 | .029              | 727  | .682  | .172                      | .102              |
| fem2 and rad1              | 122.212               | 9.534             | 1.336                 | .039              | 607  | .663  | .669                      | .503              |
| fem2 and rad1b             | 98.432                | 27.043            | 1.444                 | .109              | 80   | .687  | .989                      | .824              |
| fem2 and uln1              | 102.267               | 12.795            | 1.304                 | .048              | 476  | .613  | .417                      | .621              |

Table 3a Results of linear regression analysis on bones in Roman stature database (men)

a) Bone measures are abbreviated in the following way: fem = femur, tib = tibia, fib = fibula, hum = humerus, rad = radius, uln = ulna; Numbers refer to bone measure numbers in Martin (1928).

b) All parameter estimates are significant at the 1% level.

c) We tested for heteroskedasticity (heterogeneity of variance) using White's heteroskedasticity test. If the p-values in this column fall below .050, homoskedasticity is rejected at the 5% level.

d) If homoskedasticity is rejected (see penultimate column and note c), these are robust White-adjusted standard errors.

e) Ramsey RESET test is a general misspecification test for linear regression models. If the p-values in this column fall below .050, the relation between the two bone measures may not be linear.

|                    | consta                | int               | slope                 |                   |      |                | model                     |                   |
|--------------------|-----------------------|-------------------|-----------------------|-------------------|------|----------------|---------------------------|-------------------|
|                    |                       |                   |                       |                   |      |                |                           | Ramsey            |
|                    |                       |                   |                       |                   |      | adj.           | hetero-                   | RESET             |
| bones <sup>ª</sup> | estimate <sup>b</sup> | S.E. <sup>d</sup> | estimate <sup>b</sup> | S.E. <sup>d</sup> | n    | R <sup>2</sup> | scedasticity <sup>c</sup> | test <sup>e</sup> |
| fem1 and tib1      | 97.693 <sup>e</sup>   | 6.540             | .946                  | .019              | 1096 | .723           | .007                      | .291              |
| fem1 and tib1a     | 98.630                | 26.067            | .929                  | .076              | 38   | .802           | .868                      | .319              |
| fem1 and tib1b     | 77.345                | 12.611            | 1.011                 | .038              | 385  | .730           | .001                      | .991              |
| fem1 and fib1      | 74.228                | 11.812            | 1.037                 | .036              | 308  | .732           | .062                      | .309              |
| fem1 and hum1      | 52.753                | 6.868             | 1.221                 | .023              | 1076 | .724           | .132                      | .382              |
| fem1 and hum2      | 35.478                | 12.075            | 1.295                 | .041              | 382  | .726           | .162                      | .031              |
| fem1 and rad1      | 145.413               | 9.769             | 1.223                 | .044              | 915  | .541           | .000                      | .000              |
| fem1 and rad1b     | 89.352                | 23.322            | 1.495                 | .104              | 122  | .631           | .513                      | .999              |
| fem1 and rad2      | 110.966               | 23.456            | 1.460                 | .109              | 136  | .567           | .434                      | .772              |
| fem1 and uln1      | 129.980               | 16.150            | 1.195                 | .068              | 597  | .555           | .000                      | .000              |
| fem1 and uln2      | 184.764               | 45.439            | 1.095                 | .211              | 123  | .411           | .000                      | .000              |
| fem2 and tib1      | 85.958                | 9.574             | .971                  | .028              | 553  | .742           | .000                      | .199              |
| fem2 and tib1a     | 93.216                | 27.438            | .933                  | .079              | 36   | .796           | .945                      | .328              |
| fem2 and tib1b     | 86.106                | 12.120            | .973                  | .036              | 357  | .748           | .000                      | .539              |
| fem2 and fib1      | 53.214                | 15.857            | 1.087                 | .048              | 193  | .737           | .045                      | .913              |
| fem2 and hum1      | 52.263                | 9.828             | 1.216                 | .033              | 510  | .730           | .186                      | .116              |
| fem2 and rad1      | 121.225               | 12.246            | 1.321                 | .056              | 437  | .586           | .039                      | .715              |
| fem2 and rad1b     | 81.410                | 26.974            | 1.511                 | .120              | 86   | .651           | .057                      | .987              |
| fem2 and uln1      | 119.582               | 26.391            | 1.219                 | .110              | 330  | .547           | .000                      | .000              |

Table 3b Results of linear regression analysis on bones in Roman stature database (women)

a) Bone measures are abbreviated in the following way: fem = femur, tib = tibia, fib = fibula, hum = humerus, rad = radius, uln = ulna; Numbers refer to bone measure numbers in Martin (1928).

b) All parameter estimates are significant at the 1% level.

c) We tested for heteroskedasticity (heterogeneity of variance) using White's heteroskedasticity test. If the p-values in this column fall below .050, homoskedasticity is rejected at the 5% level.

d) If homoskedasticity is rejected (see penultimate column and note c), these are robust White-adjusted standard errors.

e) Ramsey RESET test is a general misspecification test for linear regression models. If the p-values in this column fall below .050, the relation between the two bone measures may not be linear.

|                            | constant                             |         | stature                     |       | slope                                |
|----------------------------|--------------------------------------|---------|-----------------------------|-------|--------------------------------------|
|                            |                                      |         |                             |       |                                      |
| bone measures <sup>a</sup> | 95% confidence interval <sup>b</sup> |         | method                      |       | 95% confidence interval <sup>b</sup> |
|                            |                                      | 75.110  | D & H (w)                   | 1.029 |                                      |
|                            |                                      | 67.365  | D&H(b)                      | 1.029 |                                      |
|                            |                                      | 56.296  | D & H (g)                   | 1.069 |                                      |
|                            |                                      | 181.053 | E & al.d                    | 0.695 |                                      |
| fom1 and tib1              |                                      | -12.716 | P <sup>d</sup>              | 1.264 |                                      |
|                            | 105.636 to 130.018                   | 81.500  | т                           | 1.000 | 0.880 to 0.946                       |
|                            |                                      | - 4.416 | T & G 1952 (w) <sup>f</sup> | 1.059 |                                      |
|                            |                                      | - 3.991 | T & G 1952 (b) <sup>f</sup> | 1.038 |                                      |
|                            |                                      | 70.690  | T & G 1958 (w)              | 1.043 |                                      |
|                            |                                      | 62.571  | T & G 1958 (b)              | 1.043 |                                      |
|                            |                                      | 174.453 | E & al. <sup>e</sup>        | 0.695 |                                      |
| fem1 and tib1a             | 45.763 to 151.496                    | -24.849 | P <sup>e</sup>              | 1.264 | 0.776 to 1.082                       |
|                            |                                      | 7.781   | Br.                         | 1.209 |                                      |
| fem1 and tib1b             | 56.493 to 98.197                     | 181.053 | E & al. <sup>d</sup>        | 0.695 | 0.949 to 1.072                       |
|                            |                                      |         | P <sup>d</sup>              | 1.264 |                                      |
|                            |                                      | 180.737 | E & al.                     | 0.688 |                                      |
|                            |                                      | -88.476 | т                           | 1.191 |                                      |
| fem1 and fih1              | 00 00 1 1 1 0 0 70                   | 43.571  | T & G 1952 (w)              | 1.126 |                                      |
|                            | 90.604 (0 146.378                    | 72.512  | T & G 1952 (b)              | 1.038 | 0.853 to 1.009                       |
|                            |                                      | 42.974  | T & G 1958 (w)              | 1.121 |                                      |
|                            |                                      | 37.381  | T & G 1958 (b)              | 1.114 |                                      |
|                            |                                      | 101.869 | D&H (w)                     | 1.073 |                                      |
|                            |                                      | -19.100 | D&H (b)                     | 1.460 |                                      |
|                            |                                      | 20.022  | D&H (g)                     | 1.327 |                                      |
|                            |                                      | 122.316 | E & al.                     | 0.990 |                                      |
| fem1 and hum1              |                                      | -5.673  | Р                           | 1.539 | 1 121 += 1 207                       |
|                            | 59.509 to 86.969                     | -89.367 | т                           | 1.333 | 1.121 to 1.207                       |
|                            |                                      | 37.983  | T&G 1952 (w)                | 1.294 |                                      |
|                            |                                      | -39.100 | T&G 1952(b)                 | 1.545 |                                      |
|                            |                                      | 54.181  | T&G 1958(w)                 | 1.246 |                                      |
|                            |                                      | 15.524  | T&G 1958(b)                 | 1.371 |                                      |
| fem1 and hum2              | 34.977 to 84.797                     | 67.477  | Br                          | 1.651 | 1.148 to 1.304                       |
|                            |                                      | 57.706  | D&H (w)                     | 1.630 |                                      |
|                            |                                      | 56.618  | D&H (b)                     | 1.591 |                                      |
|                            |                                      | 50.563  | D&H (g)                     | .631  |                                      |
|                            |                                      | 61.298  | E & al.                     | 1.599 |                                      |
| fem1 and rad1              | 106.151 to 138.229                   | 27.205  | Р                           | 1.740 | 1.276 to 1.406                       |
|                            |                                      | 73.950  | T&G 1952 (w)                | 1.588 |                                      |
|                            |                                      | 53.128  | T&G 1952(b)                 | 1.621 |                                      |
|                            |                                      | 59.871  | T&G 1958 (w)                | 1.634 |                                      |
|                            |                                      | 62.905  | T&G 1958(b)                 | 1.581 |                                      |
| fem1 and rad1b             | 24.572 to 107.940                    | 16.900  | Br                          | 1.804 | 1.424 to 1.761                       |

**Table 4a** Long bone length proportions in Roman stature database compared to those in popular stature reconstruction methods (men)

| fem1 and rad2  | 49.433 to 127.826  | -82.252 | т                      | 1.619 | 1.407 to 1.740 |
|----------------|--------------------|---------|------------------------|-------|----------------|
|                |                    | -20.983 | E & al.                | 1.719 |                |
|                |                    | 53.109  | T&G 1952(w)            | 1.555 |                |
| fem1 and uln1  | 85.360 to 125.356  | 42.370  | T&G 1952(b)            | 1.545 | 1.228 to 1.377 |
|                |                    | 43.190  | T & G 1958 (w)         | 1.621 |                |
|                |                    | 50.238  | T&G 1958(b)            | 1.524 |                |
| fem1 and uln2  | 89.459 to 184.459  | -80.700 | т                      | 1.524 | 1.149 to 1.546 |
| fem2 and tib1  | 04 244 to 127 170  | 180.823 | E & al. <sup>d</sup>   | 0.695 | 0 979 +0 0 069 |
|                | 94.344 to 127.170  | -13.035 | P <sup>d,e</sup>       | 1.264 | 0.878 10 0.968 |
| fem2 and tib1a | 11 607 to 116 850  | 172.153 | E & al. <sup>e</sup>   | 0.695 | 0 803 to 1 080 |
|                | 44.007 (0 110.839  | -25.169 | P <sup>e</sup>         | 1.264 | 0.893 (0 1.089 |
|                |                    | 180.823 | E & al. <sup>d,e</sup> | 0.695 |                |
| fem2 and tib1b | 93.652 to 135.725  | 56.731  | O & al. <sup>e</sup>   | 1.071 | 0.859 to 0.974 |
|                |                    | -13.035 | P <sup>d,e</sup>       | 1.264 |                |
| fem2 and fib1  | 89 497 to 157 322  | 183.037 | E & al. <sup>e</sup>   | 0.688 | 0 814 to 1 001 |
|                | 05.457 (0 157.522  | 52.186  | O & al.                | 1.109 | 0.014 (0 1.001 |
|                |                    | 120.016 | E & al. <sup>e</sup>   | 0.990 |                |
| fem2 and hum1  | 58.055 to 95.341   | 24.213  | O & al.                | 1.318 | 1.091 to 1.205 |
|                |                    | -53.616 | P <sup>e</sup>         | 1.539 |                |
| fem2 and rad1  | 103 489 to 140 935 | 58.998  | E & al. <sup>e</sup>   | 1.579 | 1 260 to 1 412 |
|                | 103.403 (0 140.555 | 26.89   | P <sup>e</sup>         | 1.740 | 1.200 to 1.412 |
| fem2 and rad1b | 44.592 to 152.271  | 40.493  | O & al.                | 1.726 | 1.226 to 1.661 |
| fem2 and uln1  | 77 125 to 127 /10  | -23.283 | E & al. <sup>e</sup>   | 1.714 | 1 211 to 1 207 |
|                | //.123 (0 127.410  | 32.990  | O & al.                | 1.636 | 1.211 (0 1.397 |
|                |                    |         |                        |       |                |

 a) Bone measures are abbreviated in the following way: fem = femur, tib = tibia, fib = fibula, hum = humerus, rad = radius, uln = ulna; Numbers refer to bone measure numbers in Martin (1928). All measures are (converted) in(to) mm. Most stature reconstruction formulae are based on either the right or the left bone, but recommend taking the average of both sides for stature reconstruction. Thus, if both left and right bone measures are available, we have taken the average of the two. If a stature reconstruction method provides correctives for the use of left vs. right bones, we have adjusted the long bone measure accordingly. For the Olivier (1978) men, the formulae for the left bones have been chosen, in analogy of the Olivier (1978) formulae for women.

b) Confidence intervals are based on OLS regression analysis of Roman stature database. If homoskedasticity is rejected (see table 3), they are computed using robust White-adjusted standard errors. Values that fall within the 95% confidence interval are in bold

c) Sypture reconstruction methods are abbreviated in the following way: Br = Breitinger (1937), D & H = Dupertuis & Hadden (1951), E & al. = Eliakis & al. (1966), O & al. = Olivier & al. (1978), P = Pearson (1899), T = Telkkä (1950), T & G = Trotter & Gleser (1952) and (1958). Further, (b) stands for 'blacks', (w) stands for 'whites', and (g) for general formulae.

d) This stature reconstruction method does not differentiate between tibia measurement nr. 1 and tibia measurement nr. 1b. Long bone length proportions therefore are compared to both tibia nr. 1 and tibia nr. 1b figures from the Roman stature database.

e) This stature reconstruction method does not recommend using one or both of these bone measures. However, as it provides a rule of thumb to convert these measures into the recommended bone measures, long bone length proportions can be calculated still.

f) Jantz & al. (1995) have pointed out that Trotter made a mistake measuring the tibia for Trotter & Gleser (1952), erroneously excluding the malleolus. Before application of the 1952 formulae, 11mm should therefore be subtracted from the tibia nr. 1 measure. In calculating the long bone proportion figures for Trotter & Gleser (1952), we have taken this corrective into account. As the formulae for the tibia in Trotter & Gleser (1958) are based on measures both in- and excluding the malleolus, they are unreliable. However, as they were widely used in the past (and as they continue to be used by some), we have included them here anyway.

|                            | constant                             |                                                                                                  | stature<br>reconstruction                                                                                                            |                                                                                      | slope                                |
|----------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------|
| bone measures <sup>a</sup> | 95% confidence interval <sup>b</sup> |                                                                                                  | method <sup>c</sup>                                                                                                                  |                                                                                      | 95% confidence interval <sup>b</sup> |
| fem1 and tib1              | 84.875 to 110.511                    | 38.233<br>73.466<br>48.166<br>-5.135<br>10.317<br>-76.739<br>- 9.907<br>- 6.167                  | D&H (w)<br>D&H (b)<br>D&H (g)<br>E&al. <sup>d</sup><br>P <sup>d</sup><br>T<br>T&G 1952 (w) <sup>f</sup><br>T&G 1952 (b) <sup>f</sup> | 1.135<br>1.009<br>1.093<br>1.232<br>1.209<br>1.056<br>1.174<br>1.075                 | 0.909 to 0.983                       |
| fem1 and tib1a             | 45.763 to 151.496                    | -15.851<br>10.317                                                                                | E & al. <sup>e</sup><br>P <sup>e</sup>                                                                                               | 1.232<br>1.209                                                                       | 0.776 to 1.082                       |
| fem1 and tib1b             | 52.627 to 102.063                    | -82.102<br>-5.135<br>10.317                                                                      | Ba<br>E & al. <sup>d</sup><br>P <sup>d</sup>                                                                                         | 1.329<br>1.232<br>1.209                                                              | 0.937 to 1.085                       |
| fem1 and fib1              | 50.986 to 197.470                    | <b>76.023</b><br>-83.583<br>22.308<br>84.860                                                     | E & al. <sup>g</sup><br>T<br>T & G 1952 (w)<br>T & G 1952 (b)                                                                        | <b>0.992</b><br>1.278<br>1.186<br><b>1.092</b>                                       | 0.967 to 1.108                       |
| fem1 and hum1              | 39.276 to 66.230                     | -63.290<br>24.143<br><b>64.858</b><br>15.386<br>122.819<br>-3.578<br>-87.850<br>15.668<br>21.535 | Ba<br>D&H (w)<br>D&H (b) <sup>g</sup><br>D&H (g)<br>E&al.<br>P<br>T<br>T&G 1952 (w)<br>T&G 1952 (b)                                  | 1.615<br>1.485<br><b>1.215</b><br>1.357<br>0.961<br>1.416<br>1.500<br>1.360<br>1.351 | 1.175 to 1.266                       |
| fem1 and hum2              | 11.735 to 59.221                     | -55.217                                                                                          | Ва                                                                                                                                   | 1.615                                                                                | 1.215 to 1.376                       |
| fem1 and rad1              | 126.266 to 164.560                   | 25.368<br>85.225<br>52.1780<br>-136.795<br>44.568<br>3.360<br>52.763                             | D&H (w)<br>D&H (b)<br>D&H (g)<br>E&al.<br>P<br>T&G 1952 (w)<br>T&G 1952 (b)                                                          | 1.834<br>1.506<br>1.673<br>2.490<br>1.719<br>1.919<br>1.610                          | 1.137 to 1.309                       |
| fem1 and rad1b             | 43.177 to 135.527                    | 77.685                                                                                           | Ba <sup>g</sup>                                                                                                                      | 1.466                                                                                | 1.290 to 1.701                       |
| fem1 and rad2              | 64.556 to 157.375                    | -77.622                                                                                          | т                                                                                                                                    | 1.466                                                                                | 1.243 to 1.676                       |
| fem1 and uln1              | 98.326 to 161.634                    | -10.232<br>14.818<br>68.509                                                                      | E & al.<br>T & G 1952 (w)<br>T & G 1952 (b)                                                                                          | 1.772<br>1.729<br>1.452                                                              | 1.062 to 1.328                       |

**Table 4b** Long bone length proportions in Roman stature database compared to those in popular staturereconstruction methods (women)

| fem1 and uln2  | 95.704 to 273.824  | -80.850 | Т                      | 1.833 | 0.681 to 1.709 |
|----------------|--------------------|---------|------------------------|-------|----------------|
| fem2 and tib1  | C7 102 to 104 722  | -8.435  | E & al. <sup>d,e</sup> | 1.232 | 0.016 to 1.026 |
|                | 67.193 to 104.723  | 9.987   | P <sup>d,e</sup>       | 1.209 | 0.916 to 1.026 |
| fem2 and tib1a | 27 E 4E to 149 079 | -19.151 | E & al. <sup>e</sup>   | 1.232 | 0 772 to 1 004 |
|                | 37.343 (0 148.978  | -0.534  | P <sup>e</sup>         | 1.209 | 0.772 to 1.094 |
| fem2 and tib1b |                    | -8.435  | E & al. <sup>d,e</sup> | 1.232 |                |
|                | 62.351 to 109.861  | 48.664  | O & al.                | 1.097 | 0.902 to 1.044 |
|                |                    | 9.987   | P <sup>d,e</sup>       | 1.209 |                |
| fem2 and fib1  | 22 124 +0 84 204   | 79.323  | E & al. <sup>e,g</sup> | 0.992 | 0 002 to 1 191 |
|                | 22.134 (0 84.294   | 52.186  | O & al. <sup>g</sup>   | 1.109 | 0.995 (0 1.161 |
| fem2 and hum1  |                    | 126.119 | E & al. <sup>e</sup>   | 0.961 |                |
|                | 32.954 to 71.572   | -37.643 | O & al.                | 1.473 | 1.151 to 1.280 |
|                |                    | -3.908  | P <sup>e</sup>         | 1.416 |                |
| fem2 and rad1  | 07 222 +0 145 227  | 138.095 | E & al. <sup>e</sup>   | 2.490 | 1 211 +0 1 421 |
|                | 97.223 (0 143.227  | 44.238  | P <sup>e</sup>         | 1.719 | 1.211 (0 1.451 |
| fem2 and rad1b | 27.769 to 135.051  | 0.477   | O & al.                | 1.972 | 1.273 to 1.749 |
| fem2 and uln1  |                    | -13.532 | E & al. <sup>e</sup>   | 1.772 | 1 002 += 1 425 |
|                | 67.856 to 171.308  | -32.917 | O & al.                | 1.953 | 1.003 to 1.435 |

 a) Bone measures are abbreviated in the following way: fem = femur, tib = tibia, fib = fibula, hum = humerus, rad = radius, uln = ulna; Numbers refer to bone measure numbers in Martin (1928). All measures are (converted) in(to) mm. Most stature reconstruction formulae are based on either the right or the left bone, but recommend taking the average of both sides for stature reconstruction. Thus, if both left and right bone measures are available, we have taken the average of the two. If a stature reconstruction method provides correctives for the use of left vs. right bones, we have adjusted the long bone measure accordingly. For the Olivier (1978) men, the formulae for the left bones have been chosen, in analogy of the Olivier (1978) formulae for women.

b) Confidence intervals are based on OLS regression analysis of Roman stature database. If homoskedasticity is rejected (see table 3), they are computed using robust White-adjusted standard errors. Values that fall within the 95% confidence interval are in bold

c) Sypture reconstruction methods are abbreviated in the following way: Br = Breitinger (1937), D & H = Dupertuis & Hadden (1951), E & al. = Eliakis & al. (1966), O & al. = Olivier & al. (1978), P = Pearson (1899), T = Telkkä (1950), T & G = Trotter & Gleser (1952) and (1958). Further, (b) stands for 'blacks', (w) stands for 'whites', and (g) for general formulae.

d) This stature reconstruction method does not differentiate between tibia measurement nr. 1 and tibia measurement nr. 1b. Long bone length proportions therefore are compared to both tibia nr. 1 and tibia nr. 1b figures from the Roman stature database.

e) This stature reconstruction method does not recommend using one or both of these bone measures. However, as it provides a rule of thumb to convert these measures into the recommended bone measures, long bone length proportions can be calculated still.

f) Jantz and al. (1995) have pointed out that Trotter made a mistake measuring the tibia for Trotter & Gleser (1952), erroneously excluding the malleolus. Before application of the 1952 formulae, 11mm should therefore be subtracted from the tibia nr. 1 measure. In calculating the long bone proportion figures for Trotter & Gleser (1952), we have taken this corrective into account. As the formulae for the tibia in Trotter & Gleser (1958) are based on measures both in- and excluding the malleolus, they are unreliable. However, as they were widely used in the past (and as they continue to be used by some), we have included them here

g) **Asybootly**.slope and constant (almost) fall within the 95% confidence interval, both parameters have been tested together using the Wald test. In all cases, they were significantly different from the values for the Roman stature database (p = .000).

|                            | consta                | int               | slope                 | ,                 |      | model          |                           |                   |
|----------------------------|-----------------------|-------------------|-----------------------|-------------------|------|----------------|---------------------------|-------------------|
|                            |                       |                   |                       |                   |      |                |                           | Ramsey            |
|                            |                       |                   |                       |                   |      | adj.           | hetero-                   | RESET             |
| bones <sup>ª</sup>         | estimate <sup>b</sup> | S.E. <sup>d</sup> | estimate <sup>b</sup> | S.E. <sup>d</sup> | n    | R <sup>2</sup> | skedasticity <sup>c</sup> | test <sup>e</sup> |
| fem1 and tib1 <sup>d</sup> | 1.576                 | 6.170             | .807                  | .014              | 1349 | .737           | .005                      | .073              |
| fem1 and tib1a             | 19.843                | 17.746            | .775                  | .040              | 96   | .801           | .725                      | .332              |
| fem1 and tib1b             | 6.379                 | 10.254            | .791                  | .023              | 432  | .739           | .145                      | .984              |
| fem1 and fib1              | 19.148                | 12.100            | .751                  | .027              | 343  | .698           | .618                      | .558              |
| fem1 and hum1              | 60.175                | 5.444             | .587                  | .012              | 1398 | .683           | .000                      | .192              |
| fem1 and hum2              | 68.936                | 7.241             | .556                  | .016              | 571  | .681           | .425                      | .507              |
| fem1 and rad1              | 32.743                | 5.590             | .472                  | .012              | 1127 | .633           | .000                      | .044              |
| fem1 and rad1b             | 45.701                | 10.794            | .438                  | .023              | 153  | .695           | .562                      | .656              |
| fem1 and rad2              | 38.979                | 10.522            | .427                  | .023              | 171  | .670           | .551                      | .760              |
| fem1 and uln1              | 56.059                | 6.182             | .466                  | .014              | 762  | .606           | .127                      | .648              |
| fem1 and uln2              | 57.510                | 13.530            | .395                  | .029              | 160  | .529           | .852                      | .883              |
| fem2 and tib1              | 10.194                | 8.759             | .795                  | .020              | 751  | .733           | .003                      | .016              |
| fem2 and tib1a             | 15.183                | 17.634            | .792                  | .040              | 112  | .783           | .882                      | .420              |
| fem2 and tib1b             | 10.031                | 11.348            | .790                  | .025              | 375  | .723           | .177                      | .904              |
| fem2 and fib1              | 51.480                | 16.254            | .687                  | .036              | 223  | .622           | .066                      | .004              |
| fem2 and hum1              | 57.993                | 7.718             | .594                  | .017              | 727  | .682           | .003                      | .175              |
| fem2 and rad1              | 22.032                | 6.495             | .497                  | .014              | 607  | .663           | .873                      | .713              |
| fem2 and rad1b             | 29.224                | 16.514            | .479                  | .036              | 80   | .687           | .473                      | .455              |
| fem2 and uln1              | 55.708                | 7.779             | .471                  | .017              | 476  | .613           | .628                      | .574              |

Table 5a Robustness test: Results of linear regression analysis on bones in Roman stature database (men)

a) Bone measures are abbreviated in the following way: fem = femur, tib = tibia, fib = fibula, hum = humerus, rad = radius, uln = ulna; Numbers refer to bone measure numbers in Martin (1928).

b) All parameter estimates are significant at the 1% level.

c) We tested for heteroskedasticity (heterogeneity of variance) using White's heteroskedasticity test. If the p-values in this column fall below .050, homoskedasticity is rejected at the 5% level.

d) If homoskedasticity is rejected (see penultimate column and note c), these are robust White-adjusted standard errors.

e) Ramsey RESET test is a general misspecification test for linear regression models. If the p-values in this column fall below .050, the relation between the two bone measures may not be linear.

|                            | consta                | ant               | slope                 | ,                 |      | model          |                           |                   |  |
|----------------------------|-----------------------|-------------------|-----------------------|-------------------|------|----------------|---------------------------|-------------------|--|
|                            |                       |                   |                       |                   |      |                |                           | Ramsey            |  |
|                            |                       |                   |                       |                   |      | adj.           | hetero-                   | RESET             |  |
| bones <sup>ª</sup>         | estimate <sup>b</sup> | S.E. <sup>d</sup> | estimate <sup>b</sup> | S.E. <sup>d</sup> | n    | R <sup>2</sup> | skedasticity <sup>c</sup> | test <sup>e</sup> |  |
| fem1 and tib1 <sup>d</sup> | 18.992                | 5.985             | .765                  | .014              | 1096 | .723           | .059                      | .239              |  |
| fem1 and tib1a             | -19.487               | 29.641            | .870                  | .071              | 38   | .802           | .516                      | .532              |  |
| fem1 and tib1b             | 34.938                | 9.407             | .723                  | .022              | 385  | .730           | .646                      | .990              |  |
| fem1 and fib1              | 35.635                | 10.153            | .706                  | .024              | 308  | .732           | .005                      | .174              |  |
| fem1 and hum1              | 51.008                | 4.665             | .593                  | .011              | 1076 | .724           | .528                      | .711              |  |
| fem1 and hum2              | 60.962                | 7.403             | .561                  | .018              | 382  | .726           | .873                      | .502              |  |
| fem1 and rad1              | 37.176                | 5.619             | .443                  | .013              | 915  | .541           | .067                      | .002              |  |
| fem1 and rad1b             | 44.283                | 12.519            | .424                  | .029              | 122  | .631           | .167                      | .717              |  |
| fem1 and rad2              | 48.564                | 12.427            | .391                  | .029              | 136  | .567           | .000                      | .000              |  |
| fem1 and uln1              | 46.486                | 7.122             | .465                  | .017              | 597  | .555           | .300                      | .620              |  |
| fem1 and uln2              | 57.198                | 17.359            | .380                  | .041              | 123  | .411           | .629                      | .197              |  |
| fem2 and tib1              | 21.956                | 8.008             | .765                  | .019              | 553  | .742           | .526                      | .502              |  |
| fem2 and tib1a             | -11.933               | 30.416            | .860                  | .073              | 36   | .796           | .383                      | .691              |  |
| fem2 and tib1b             | 18.601                | 9.832             | .770                  | .024              | 357  | .748           | .371                      | .399              |  |
| fem2 and fib1              | 50.602                | 12.128            | .680                  | .029              | 193  | .737           | .016                      | .039              |  |
| fem2 and hum1              | 49.295                | 6.757             | .601                  | .016              | 510  | .730           | .862                      | .700              |  |
| fem2 and rad1              | 37.887                | 7.426             | .444                  | .018              | 437  | .586           | .003                      | .001              |  |
| fem2 and rad1b             | 42.389                | 14.487            | .433                  | .034              | 86   | .651           | .958                      | .077              |  |
| fem2 and uln1              | 55.996                | 9.389             | .450                  | .023              | 330  | .547           | .539                      | .034              |  |

Table 5b Robustness test: Results of linear regression analysis on bones in Roman stature database (women)

a) Bone measures are abbreviated in the following way: fem = femur, tib = tibia, fib = fibula, hum = humerus, rad = radius, uln = ulna; Numbers refer to bone measure numbers in Martin (1928).

b) All parameter estimates are significant at the 1% level.

c) We tested for heteroskedasticity (heterogeneity of variance) using White's heteroskedasticity test. If the p-values in this column fall below .050, homoskedasticity is rejected at the 5% level.

d) If homoskedasticity is rejected (see penultimate column and note c), these are robust White-adjusted standard errors.

e) Ramsey RESET test is a general misspecification test for linear regression models. If the p-values in this column fall below .050, the relation between the two bone measures may not be linear.

|                            | constant                             |                    | stature<br>reconstruction                 |                | slope                                |
|----------------------------|--------------------------------------|--------------------|-------------------------------------------|----------------|--------------------------------------|
| bone measures <sup>a</sup> | 95% confidence interval <sup>b</sup> |                    | method <sup>c</sup>                       |                | 95% confidence interval <sup>b</sup> |
|                            |                                      | -72,993<br>-65,466 | D & H (w)<br>D & H (b)                    | 0,972<br>0,972 |                                      |
|                            |                                      | -52,662            | D&H(g)                                    | 0,935          |                                      |
|                            |                                      | -260,508           | E & al.                                   | 1,439          |                                      |
| tib1 and fem1              | -10.517 to 13.669                    | 10,060<br>81 E00   | р<br>т                                    | 1,000          | .780 to .834                         |
|                            |                                      | -81,500            | ا<br>Т ۹ С 1052 (ա) <sup>f</sup>          | 1.000          |                                      |
|                            |                                      | 4,170<br>2 945     | T&G 1952 (W)<br>T&G 1952 (b) <sup>f</sup> | 0,944          |                                      |
|                            |                                      | <b>3,043</b>       | T & G 1952 (D)                            | 0,905          |                                      |
|                            |                                      | -07,770            | T & G 1958 (W)<br>T & G 1958 (b)          | 0,959          |                                      |
|                            |                                      | -39,991            | E & al e                                  | 1 / 20         |                                      |
| tib1a and fem1             | -15.393 to 55.079                    | -231,012           | L & al.                                   | 1,439          | .697 to .854                         |
|                            |                                      | 19,659             | Pf.g                                      | 0,791          |                                      |
| tih1h and fem1             |                                      | -6,436             | Br <sup>70</sup>                          | 0,827          | 747 . 000                            |
|                            | -13.775 to 26.533                    | -260,508           | E & al.                                   | 1,439          | ./4/ to .836                         |
|                            |                                      | 10,060             | µ ∾<br>۲.۹۱                               | 0,791          |                                      |
|                            |                                      | -262,699           | E & al.                                   | 1,453          |                                      |
|                            |                                      | 74,287             |                                           | 0,840          |                                      |
| fib1 and fem1              | -4.652 to 42.947                     |                    | T & G 1952 (W)                            | 0,888          | .698 to .803                         |
|                            |                                      | -09,857            | T & G 1952 (D)                            | 0,963          |                                      |
|                            |                                      | -20,222            | T & C 1058 (W)                            | 0,692          |                                      |
|                            |                                      | -33,550            |                                           | 0,898          |                                      |
|                            |                                      | 12 002             | שמה (w)<br>הפיח (b)                       | 0,952          |                                      |
|                            |                                      | 15,082             |                                           | 0,085          |                                      |
|                            |                                      | -122 552           | E & al                                    | 1 010          |                                      |
|                            |                                      | 3 686              | L & al.                                   | 0.650          |                                      |
| hum1 and fem1              | 49.513 to 70.837                     | 67 042             | т                                         | 0,050          | .565 to .611                         |
|                            |                                      | -29 353            | т&с 1952 (w)                              | 0,730          |                                      |
|                            |                                      | 25,303             | T&G 1952 (W)                              | 0.647          |                                      |
|                            |                                      | -43 484            | T & G 1952 (S)                            | 0,803          |                                      |
|                            |                                      | -11.323            | T&G 1958 (h)                              | 0.729          |                                      |
| hum2 and fem1              | 54.714 to 83.158                     | _10.87             | Br                                        | 0.606          | .525 to .588                         |
|                            |                                      | -40,87             |                                           | 0,000          |                                      |
|                            |                                      | -35,402            | D&н (w)<br>D&н (b)                        | 0,015          |                                      |
|                            |                                      | -30,380            | D&H (g)                                   | 1 5 8 5        |                                      |
|                            |                                      | -38 335            | E&al                                      | 0.625          |                                      |
| rad1 and fem1              | 21 787 to 13 699                     | -36,333            | L & ai.<br>D                              | 0,025          | 118 to 196                           |
|                            | 21.707 (0 45.055                     | -46 568            | T&G 1952 (\v/)                            | 0,575          |                                      |
|                            |                                      | -32 775            | T&G 1952(W)                               | 0,050          |                                      |
|                            |                                      | -36 6/1            | T&G 1058 (w)                              | 0.612          |                                      |
|                            |                                      | -39 788            | T&G 1958 (h)                              | 0.633          |                                      |
| rad1b and fem1             | 24 274 to C7 020                     | 55,700             | <u>.</u>                                  | 0,000          | 201 to 494                           |
|                            | 24.374 10 67.029                     | -9,368             | RL                                        | 0,554          | .391 10 .484                         |

**Table 6a** Robustness test: long bone length proportions in Roman stature database compared to those in popularstature reconstruction methods (men)

| rad2 and fem1  | 18.209 to 59.750  | 50,804   | т                      | 0,618 | .382 to .473 |
|----------------|-------------------|----------|------------------------|-------|--------------|
|                |                   | 12,207   | E & al.                | 0,582 |              |
|                |                   | -34,154  | T&G 1952(w)            | 0,643 |              |
| uln1 and fem1  | 43.923 to 68.196  | -27,424  | T & G 1952 (b)         | 0,647 | .439 to .493 |
|                |                   | -26,644  | T&G 1958(w)            | 0,617 |              |
|                |                   | -32,965  | T&G 1958(b)            | 0,656 |              |
| uln2 and fem1  | 30.786 to 84.233  | 52,953   | т                      | 0,656 | .337 to .453 |
| tib1 and fem2  | 6 074 +0 27 262   | -260,177 | E & al. <sup>d</sup>   | 1,439 | 7E6 to 924   |
|                | -0.974 10 27.302  | 10,313   | $P^{d,e,f,g}$          | 0,791 | .750 10 .854 |
| tib1a and fem2 | 10 762 to 50 120  | -247,702 | E & al. <sup>e</sup>   | 1,439 | 71/ to 971   |
|                | -19.703 (0 50.150 | 19,912   | P <sup>e,f,g</sup>     | 0,791 | ./14 (0 .0/1 |
|                |                   | -260,177 | E & al. <sup>d,e</sup> | 1,439 |              |
| tib1b and fem2 | -12.283 to 32.345 | -52,97   | O & al. <sup>e</sup>   | 0,934 | .740 to.840  |
|                |                   | 10,313   | P <sup>d,e,g</sup>     | 0,791 |              |
| fib1 and fem2  | 19 116 to 83 513  | -266,042 | E & al. <sup>e</sup>   | 1,453 | 616 to 758   |
|                | 13.440 (0 03.313  | -47,057  | O & al.                | 0,902 | .010 (0.758  |
|                |                   | -121,228 | E & al. <sup>e</sup>   | 1,010 |              |
| hum1 and fem2  | 42.866 to 73.120  | -18,371  | O & al.                | 0,759 | .561 to .627 |
|                |                   | 34,838   | P <sup>e</sup>         | 0,650 |              |
| rad1 and fem2  | 0 276 to 24 788   | -37,364  | E & al. <sup>e</sup>   | 0,633 | 160 to 525   |
|                | 9.270 (0 54.788   | -1,545   | P <sup>e</sup>         | 0,575 | .409 10 .323 |
| rad1b and fem2 | -3.653 to 62.101  | -23,461  | O & al.                | 0,579 | .406 to .551 |
| uln1 and fem2  | 10 122 to 70 002  | 13,584   | E & al. <sup>e</sup>   | 0,583 | 127 to 501   |
|                | 40.423 10 70.395  | -20,165  | O & al.                | 0,611 | .437 10.304  |

 a) Bone measures are abbreviated in the following way: fem = femur, tib = tibia, fib = fibula, hum = humerus, rad = radius, uln = ulna; Numbers refer to bone measure numbers in Martin (1928). All measures are (converted) in(to) mm. Most stature reconstruction formulae are based on either the right or the left bone, but recommend taking the average of both sides for stature reconstruction. Thus, if both left and right bone measures are available, we have taken the average of the two. If a stature reconstruction method provides correctives for the use of left vs. right bones, we have adjusted the long bone measure accordingly. For the Olivier (1978) men, the formulae for the left bones have been chosen, in analogy of the Olivier (1978) formulae for women.

b) Confidence intervals are based on OLS regression analysis of Roman stature database. If homoskedasticity is rejected (see table 3), they are computed using robust White-adjusted standard errors. Values that fall within the 95% confidence interval are in bold

c) Sypture reconstruction methods are abbreviated in the following way: Br = Breitinger (1937), D & H = Dupertuis & Hadden (1951), E & al. = Eliakis & al. (1966), O & al. = Olivier & al. (1978), P = Pearson (1899), T = Telkkä (1950), T & G = Trotter & Gleser (1952) and (1958). Further, (b) stands for 'blacks', (w) stands for 'whites', and (g) for general formulae.

d) This stature reconstruction method does not differentiate between tibia measurement nr. 1 and tibia measurement nr. 1b. Long bone length proportions therefore are compared to both tibia nr. 1 and tibia nr. 1b figures from the Roman stature database.

e) This stature reconstruction method does not recommend using one or both of these bone measures. However, as it provides a rule of thumb to convert these measures into the recommended bone measures, long bone length proportions can be calculated still.

f) Jantz and al. (1995) have pointed out that Trotter made a mistake measuring the tibia for Trotter & Gleser (1952), erroneously excluding the malleolus. Before application of the 1952 formulae, 11mm should therefore be subtracted from the tibia nr. 1 measure. In calculating the long bone proportion figures for Trotter & Gleser (1952), we have taken this corrective into account. As the formulae for the tibia in Trotter & Gleser (1958) are based on measures both in- and excluding the malleolus, they are unreliable. However, as they were widely used in the past (and as they continue to be used by some), we have included them here

g) Asybody.slope and constant (almost) fall within the 95% confidence interval, both parameters have been tested together using the Wald test. In all cases, they were significantly different from the values for the Roman stature database (p = .000), except tibia measure 1b and femur measure 2 in Pearson (p = .407).

|                            | constant                             |                                                                                                    | stature<br>reconstruction                                                                                                            |                                                                               | slope                                |
|----------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------|
| bone measures <sup>a</sup> | 95% confidence interval <sup>b</sup> |                                                                                                    | method <sup>c</sup>                                                                                                                  |                                                                               | 95% confidence interval <sup>b</sup> |
| tib1 and fem1              | 7.250 to 30.735                      | -33,685<br>-72,811<br>-44,068<br>4,168<br>-8,533<br>72,67<br>8,439<br>5,737                        | D&H (w)<br>D&H (b)<br>D&H (g)<br>E&al. <sup>d</sup><br>P <sup>d</sup><br>T<br>T&G 1952 (w) <sup>f</sup><br>T&G 1952 (b) <sup>f</sup> | 0,881<br>0,991<br>0,915<br>0,812<br>0,827<br>0,947<br>0,852<br>0,930          | .737 to .739                         |
| tib1a and fem1             | -79.602 to 40.628                    | 12,866                                                                                             | E & al. <sup>e,g</sup><br>P <sup>e,g</sup>                                                                                           | 0,812<br>0,827                                                                | .726 to 1.013                        |
| tib1b and fem1             | 16.443 to 53.434                     | 61,777<br>4,168<br>-8,533                                                                          | Ba<br>E & al. <sup>d</sup><br>P <sup>d</sup>                                                                                         | <b>0,752</b><br>0,812<br>0,827                                                | .679 to .767                         |
| fib1 and fem1              | 14.916 to 56.354                     | -76,636<br>65,401<br>-18,809<br>-77 711                                                            | E & al.<br>T<br>T & G 1952 (w)<br>T & G 1952 (b)                                                                                     | 1,008<br>0,782<br>0,843<br>0,916                                              | .655 to .757                         |
| hum1 and fem1              | 41.854 to 60.162                     | 39,189<br>-16,258<br>-53,381<br>-11,338<br>-127,803<br>2,527<br><b>58,567</b><br>-11,521<br>-15,94 | Ba<br>D&H (w)<br>D&H (b) <sup>g</sup><br>D&H (g)<br>E&al.<br>P<br>T<br>T&G 1952 (w)<br>T&G 1952 (b)                                  | 0,619<br>0,673<br>0,823<br>0,737<br>1,041<br>0,706<br>0,667<br>0,735<br>0,740 | .571 to .615                         |
| hum2 and fem1              | 46.407 to 75.517                     | 34,19                                                                                              | Ва                                                                                                                                   | 0,619                                                                         | .526 to .596                         |
| rad1 and fem1              | 26.148 to 84.204                     | -13,832<br>-56,59<br>-311,883<br><b>54,938</b><br>-25,927<br>-1,751<br>-32,772                     | D&H (w)<br>D&H (b)<br>D&H (g)<br>E&al.<br>P<br>T&G 1952 (w)<br>T&G 1952 (b)                                                          | 0,545<br>0,664<br>0,598<br>0,402<br>0,582<br>0,521<br>0,621                   | .416 to .469                         |
| rad1b and fem1             | 19.746 to 68.820                     | -52,991                                                                                            | Ba <sup>g</sup>                                                                                                                      | 0,682                                                                         | .367 to .481                         |
| rad2 and fem1              | 14.619 to 82.509                     | 52,948                                                                                             | Т                                                                                                                                    | 0,682                                                                         | .311 to .471                         |
| uln1 and fem1              | 32.498 to 60.473                     | 5,774<br>-8,57<br>-47,183                                                                          | E & al.<br>T & G 1952 (w)<br>T & G 1952 (b)                                                                                          | 0,564<br>0,578<br>0,689                                                       | .431 to .498                         |
| uln2 and fem1              | 22.831 to 91.565                     | 44,108                                                                                             | т                                                                                                                                    | 0,546                                                                         | .299 to .461                         |

**Table 6b** Robustness test: Long bone length proportions in Roman stature database compared to those in popularstature reconstruction methods (women)

| tib1 and fem2  | 6 227 +0 27 696   | 6,847    | E & al. <sup>d,e</sup>   | 0,812 | 727 to 902    |  |
|----------------|-------------------|----------|--------------------------|-------|---------------|--|
|                | 0.227 10 57.000   | -8,261   | P <sup>d,e</sup>         | 0,827 | .727 10 .802  |  |
| tib1a and fem2 | -73.746 to 49.881 | 15,545   | E & al. <sup>e,g</sup>   | 0,812 | .711 to 1.009 |  |
|                |                   | 0,442    | P <sup>e,g</sup>         | 0,827 |               |  |
| tib1b and fem2 |                   | 6,847    | E & al. <sup>d,e,g</sup> | 0,812 |               |  |
|                | -0.734 to 37.937  | -44,361  | O & al.                  | 0,912 | .723 to .816  |  |
|                |                   | -8,261   | P <sup>d,e</sup>         | 0,827 |               |  |
| fib1 and fem2  | 26.261 to 75.943  | -79,963  | E & al. <sup>e</sup>     | 1,008 | .619 to .741  |  |
|                |                   | -47,057  | O & al.                  | 0,902 |               |  |
| hum1 and fem2  |                   | -131,237 | E & al. <sup>e</sup>     | 1,041 |               |  |
|                | 36.021 to 62.569  | 25,555   | O & al.                  | 0,679 | .569 to .633  |  |
|                |                   | 2,760    | P <sup>e</sup>           | 0,706 |               |  |
| rad1 and fem2  | 20 70C to 54 079  | -55,460  | E & al. <sup>e</sup>     | 0,402 | 102 to 195    |  |
|                | 20.796 10 54.978  | -25,735  | P <sup>e</sup>           | 0,582 | .405 (0.485   |  |
| rad1b and fem2 | 13.580 to 71.197  | -0,242   | O & al.                  | 0,507 | .365 to .502  |  |
| uln1 and fem2  | 37.526 to 74.466  | 7,637    | E & al. <sup>e</sup>     | 0,564 | .405 to.494   |  |
|                |                   | 16.856   | O & al.                  | 0,512 |               |  |

 a) Bone measures are abbreviated in the following way: fem = femur, tib = tibia, fib = fibula, hum = humerus, rad = radius, uln = ulna; Numbers refer to bone measure numbers in Martin (1928). All measures are (converted) in(to) mm. Most stature reconstruction formulae are based on either the right or the left bone, but recommend taking the average of both sides for stature reconstruction. Thus, if both left and right bone measures are available, we have taken the average of the two. If a stature reconstruction method provides correctives for the use of left vs. right bones, we have adjusted the long bone measure accordingly. For the Olivier (1978) men, the formulae for the left bones have been chosen, in analogy of the Olivier (1978) formulae for women.

b) Confidence intervals are based on OLS regression analysis of Roman stature database. If homoskedasticity is rejected (see table 3), they are computed using robust White-adjusted standard errors. Values that fall within the 95% confidence interval are in bold

c) Sypture reconstruction methods are abbreviated in the following way: Br = Breitinger (1937), D & H = Dupertuis & Hadden (1951), E & al. = Eliakis & al. (1966), O & al. = Olivier & al. (1978), P = Pearson (1899), T = Telkkä (1950), T & G = Trotter & Gleser (1952) and (1958). Further, (b) stands for 'blacks', (w) stands for 'whites', and (g) for general formulae.

d) This stature reconstruction method does not differentiate between tibia measurement nr. 1 and tibia measurement nr. 1b. Long bone length proportions therefore are compared to both tibia nr. 1 and tibia nr. 1b figures from the Roman stature database.

e) This stature reconstruction method does not recommend using one or both of these bone measures. However, as it provides a rule of thumb to convert these measures into the recommended bone measures, long bone length proportions can be calculated still.

f) Jantz and al. (1995) have pointed out that Trotter made a mistake measuring the tibia for Trotter & Gleser (1952), erroneously excluding the malleolus. Before application of the 1952 formulae, 11mm should therefore be subtracted from the tibia nr. 1 measure. In calculating the long bone proportion figures for Trotter & Gleser (1952), we have taken this corrective into account. As the formulae for the tibia in Trotter & Gleser (1958) are based on measures both in- and excluding the malleolus, they are unreliable. However, as they were widely used in the past (and as they continue to be used by some), we have included them here

g) Asybody.slope and constant (almost) fall within the 95% confidence interval, both parameters have been tested together using the Wald test. In all cases, they were significantly different from the values for the Roman stature database (p = .000), except tibia measure 1a and femur measure 2 in Pearson (p = .618).



university of groningen

### List of research reports

12001-HRM&OB: Veltrop, D.B., C.L.M. Hermes, T.J.B.M. Postma and J. de Haan, A Tale of Two Factions: Exploring the Relationship between Factional Faultlines and Conflict Management in Pension Fund Boards

12002-EEF: Angelini, V. and J.O. Mierau, Social and Economic Aspects of Childhood Health: Evidence from Western-Europe

12003-Other: Valkenhoef, G.H.M. van, T. Tervonen, E.O. de Brock and H. Hillege, Clinical trials information in drug development and regulation: existing systems and standards

12004-EEF: Toolsema, L.A. and M.A. Allers, Welfare financing: Grant allocation and efficiency

12005-EEF: Boonman, T.M., J.P.A.M. Jacobs and G.H. Kuper, The Global Financial Crisis and currency crises in Latin America

12006-EEF: Kuper, G.H. and E. Sterken, Participation and Performance at the London 2012 Olympics

12007-Other: Zhao, J., G.H.M. van Valkenhoef, E.O. de Brock and H. Hillege, ADDIS: an automated way to do network meta-analysis

12008-GEM: Hoorn, A.A.J. van, Individualism and the cultural roots of management practices

12009-EEF: Dungey, M., J.P.A.M. Jacobs, J. Tian and S. van Norden, On trend-cycle decomposition and data revision

12010-EEF: Jong-A-Pin, R., J-E. Sturm and J. de Haan, Using real-time data to test for political budget cycles

12011-EEF: Samarina, A., Monetary targeting and financial system characteristics: An empirical analysis

12012-EEF: Alessie, R., V. Angelini and P. van Santen, Pension wealth and household savings in Europe: Evidence from SHARELIFE

13001-EEF: Kuper, G.H. and M. Mulder, Cross-border infrastructure constraints, regulatory measures and economic integration of the Dutch – German gas market

13002-EEF: Klein Goldewijk, G.M. and J.P.A.M. Jacobs, The relation between stature and long bone length in the Roman Empire

# www.rug.nl/feb