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1 Introduction

In evidence-based medicine, meta-analysis is an important statistical technique
for combining the findings from independent clinical trials which have attempted
to answer similar questions about treatment’s clinical effectiveness [1]. Nor-
mally, such meta-analyses are pair-wise treatment comparisons, which only in-
clude the comparisons between two treatments, e.g. treatment A and placebo.
When additional treatments are of interest (e.g. treatment B and treatment C),
pair-wise treatment comparison starts showing its limitations as it only accesses
the evidence from direct comparisons between two treatments and can not guar-
antee consistency between comparisons. Network meta-analysis is a statistical
method for combining both direct and indirect evidence from multiple trials in
order to obtain a single consistent quantitative synthesis [2, 3, 4]. It enables to
detect the heterogeneity among different trials comparing the same treatments
and inconsistency between direct and indirect evidence.

Compared to pair-wise meta-analysis, network meta-analysis is rather dif-
ficult to conduct due to the need for analyzing inconsistency, specifying the
model, assessing convergence, etc. The purpose of this report is to introduce an
automated way to perform network meta-analysis through ADDIS (Aggregate
Data Drug Information System).
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ADDIS is a decision support system developed to assist researchers to store
data from clinical trials in a structured way and create meta-analyses, network
meta-analyses, and benefit-risk assessments in an easy and user-friend way [5].
It is open source software and can be download at http://drugis.org/addis for
free. Algorithms have been developed for ADDIS to automatically generate
consistency models [6], inconsistency models [7], and node-splitting models [8].
Graphical and quantitative summaries are provided to assist the interpretation
and improve the presentation of results from network meta-analysis. To illus-
trate how a network meta-analysis can be performed in ADDIS, we re-analyze
the data from a published systematic review and network meta-analysis in anti-
hypertensive therapies [9].

2 Background

Network meta-analysis statistically combines the results of a collection of clinical
trials comparing all or some of the treatments of interest. The key assumption
underlying any meta-analysis is exchangeability of the trials: the trials all mea-
sure the same underlying relative treatment effects; any observed differences are
due to chance. To apply this definition to networks in which trials do not all
compare the same treatments, we assume that the missing arms are missing “at
random”. Suppose there are three treatments, A, B, and C, and pair-wise com-
parisons AB and AC. Then, the assumption is that if an AB trial would have
also included a C arm, it would measure the same underlying relative effect for
AC as the AC trials included in the network.

The best way to assess exchangeability is to collect information about the
clinical trials, and carefully consider whether they are indeed similar enough
to be compared. For example, are all the trials of similar duration, or are the
trials that compare A and B much shorter than those that compare B and C?
If we find such a difference, this could have an important impact on whether
the results of a network meta-analysis are reliable. Other potential confounding
factors include dosage, study quality, patient inclusion and exclusion criteria,
publication bias, etc. Thus, when defining the dataset for a network meta-
analysis, we should be careful to ensure that the included clinical trials are as
homogeneous as possible.

If the exchangeability assumption is violated in a pair-wise meta-analysis,
this may lead to heterogeneity: a larger than expected variation in results be-
tween trials. When the amount of heterogeneity is large, it may be inappropriate
to calculate an overall summary of effect size. On the other hand, there are of-
ten small differences in the population or conduct of trials that lead to a minor
amount of heterogeneity. In this case, a relaxed version of the exchangeability
assumption may be more appropriate: we allow for some variation between tri-
als, and attempt to model it. Thus, rather than each trial measuring the same
underlying effect (a fixed effects model), the underlying effect of each trial is
drawn from a normal distribution with a common mean and variance (a ran-
dom effects model). In a random effects model, the random effects variance is
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an important quantity that measures the heterogeneity between trials.
In a network meta-analysis, a violation of exchangeability can also lead to

differences between (rather than within) comparisons. This is called inconsis-
tency (and sometimes incoherence): disagreement between direct and indirect
evidence. Note that inconsistency can only be detected when both direct and
indirect evidence are available for a comparison. Thus, if we compare AC indi-
rectly through AB and BC there could be a systematic difference between the
AB and the BC trials that leads to inconsistency, but that inconsistency can
not be detected statistically in the absence of AC trials. There are several sta-
tistical models to detect inconsistency (discussed below), but it is important to
note that even if such a model does not detect inconsistency, that does not mean
that the network indeed consists of exchangeable trials. The most important
step to ensure valid results remains the careful selection of trials for inclusion
in the analysis.

2.1 Consistency analysis

In pair-wise meta-analysis, we could derive three unrelated estimates of relative
effects dAB , dAC , and dBC from the given trials. In network meta-analysis,
by contrast, we estimate all three relative effects simultaneously through the
consistency constraint: dBC = dAC −dAB . This means that the parameter dBC

is estimated from both direct evidence on BC and indirect evidence on AC
and AB. When doing a network meta-analysis, one is normally only interested
in the results under consistency, since only consistent results provide a solid
basis for decision making. However, we can not blindly apply the consistency
model, because doing that will force the results to be consistent, even when the
data are not. If that is the case, we could draw incorrect conclusions from the
consistency model.

2.2 Inconsistency analysis

Inconsistency [3] or node-splitting models [10] can be applied to check whether
the trials in the network are indeed consistent. Both of them are based on
relaxing the consistency constraint. In a random effects model, small differences
between comparisons could also be modeled as heterogeneity. Thus, if a model
with the consistency constraint has much higher random effects variance than
the individual pair-wise comparisons, that indicates a potential inconsistency
problem.

The inconsistency model assesses inconsistency by adding inconsistency fac-
tors to closed loops: dBC = dAC − dAB + φ, where φ is an inconsistency factor,
representing the discrepancy between the direct and indirect evidence. The
number of independent (potential) inconsistencies determines the number of in-
consistency factors. Each inconsistency factor lies on a cycle (e.g. ABC) rather
than on individual pair-wise comparisons. The size of an inconsistency factor
reflects the inconsistency within the cycle [3]. The inconsistency factors share
a common variance, the inconsistency variance. It has been suggested that if
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the inconsistency variance is greater than the random effects variance, that in-
dicates an inconsistency problem [3]. The inconsistency model can assess all
potential inconsistencies in a single model, but is difficult to interpret and may
lack statistical power.

By contrast, a different node splitting model must be estimated for each
comparison that involves both direct and indirect evidence. This is more time-
consuming, but the results are easier to interpret. The node splitting model
selects a single comparison for which the direct and indirect evidence are com-
pared [10]. Two posterior distributions are obtained for the mean treatment
effect, e.g. dBC : one, dDir

BC , based on pair-wise analysis of the trials including B
and C, and another, dIndBC , based on indirect comparison through a consistency
model of the trials including A and B and the trials including A and C. The
difference between the two, dDir

BC −dIndBC , is called inconsistency parameter. If the
two trials are exchangeable, the corresponding inconsistency parameter should
be zero.

2.3 Convergence diagnostics

Network meta-analysis models in ADDIS are implemented in the Bayesian
framework and estimated using Markov chain Monte Carlo (MCMC) meth-
ods. This approach is recommended by the National Institute for Health and
Clinical Excellence (NICE) Decision Support Unit technical support documents
on evidence synthesis [11] and commonly used in the literature [3, 4, 10, 12].
MCMC methods [13] are extremely flexible in estimating statistical models, but
their application requires some care. The methods work by initially giving the
model’s parameters some arbitrary values (the starting point) and then updat-
ing the parameters each iteration using some stochastic process. In this manner,
the parameters (samples) generated each iteration are correlated with the sam-
ples generated the previous iteration; this is called a Markov chain. Eventually,
the Markov chain will provide an accurate estimate of the statistical model, in
which case we say it has converged. However, how many iterations are required
to get an accurate estimate is not known in advance.

To determine whether or not sufficient iterations have been generated, con-
vergence diagnostics have to be applied. The Brooks-Gelman-Rubin diagnostic
[14, 15] implemented in ADDIS runs several Markov chains with different start-
ing points and compares their results. When all the chains are similar, this
indicates that the model has converged. Specifically, convergence is assessed by
comparing within-chain and between-chain variance to calculate the Potential
Scale Reduction Factor (PSRF) [15]. If the PSRF is large, it means that the
between-chains variance can be decreased by running additional iterations. If
the PSRF is close to 1, it indicates approximate convergence has been reached.
An iterative PRSF plot is useful to verify that the between-chain variance is de-
creasing and the within-chain variation is increasing as the simulations converge
[15].
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3 Example dataset

Psaty et al [9] performed a network meta-analysis which combined clinical trial
data from 42 studies that included 192,478 patients randomized to 7 major treat-
ment strategies for patients with uncomplicated hypertension. The treatment
strategies evaluated in their network meta-analysis are:

• Placebo

• Diuretic therapy (chlorothiazide or hydrochlorothiazide 12.5 to 25 mg/day)

• β-blockers

• Angiotensin-converting enzyme (ACE) inhibitors

• Angiotensin receptor blockers (ARB)

• Calcium channel blockers (CCB)

• α-blockers

Six clinical outcomes are assessed:

• Coronary heart disease (CHD)

• Congestive heart failure (CHF)

• Stroke

• Cardiovascular disease (CVD) events

• CVD mortality

• Total mortality

The network of all the treatments from included studies is shown in Figure 1.

4 Implementation in ADDIS

In this section, we show how to reproduce the network meta-analysis by Psaty et
al [9] in ADDIS. We start with a step-by-step instruction for defining the dataset
for the network meta-analysis. Then we illustrate the consistency analysis and
inconsistency analysis for the outcome “Coronary Heart Disease”. Next we
explain how the assessment of convergence can be done in ADDIS. Finally,
after concluding that there is no discernible inconsistency, we show the results
on all six outcomes based on the results of consistency analysis as Forest plots
relative to Diuretics.
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Figure 1: Network meta-analysis of first-line anti-hypertensive drug treatments.
The width of the lines indicates the number of studies that include that com-
parison (the minimum is 1 and the maximum is 8)

4.1 Defining the analysis dataset

ADDIS assists implementation of network meta-analysis based on the entered
data (a tutorial of entering data in ADDIS is at http://drugis.org/addis1.8).
The dataset for this example can be obtained by “Load example” in ADDIS.
The process of defining a network meta-analysis dataset is presented as a series
of screen shots in Figure 2. By clicking “New Network meta-analysis” on the
main window of ADDIS, the user starts this step wise process.

Step 1: Choose a name and an indication (Figure 2 (a)). The user gives a
name to the analysis (e.g. “Psaty CHD”) and chooses an indication (“38341003
Hypertensive disorder” in this example). Based on the chosen indication, the
system selects and presents all the outcome measures from different studies with
this indication.

Step 2: Choose an outcome (Figure 2 (b)). The user selects an outcome
(“CHD” in this example) that he or she would like to analyze. Based on the
chosen outcome, the system selects the studies and treatments that can be
included in the analysis.

Step 3: Choose alternatives (Figure 2 (c)). Based on the available treat-
ments, the system constructs the evidence graph, where the user can pick the
ones to include in the analysis. A green block means that the treatment is in-
cluded and a gray one that it is excluded. The number on the line represents
the number of studies participating in each comparison. The system will not
continue if the selected treatments do not form a connected evidence network.
Placebo, Diuretics, ACE inhibitor, CCB, ARB, α-blockers, and β-blockers were
selected in this example.

6
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(a) Select indication and name (b) Select outcome

(c) Select drugs (d) Select studies

(e) Select arms (f) Overview

Figure 2: Step-wise instruction of defining the dataset for network meta-analysis
in ADDIS

Step 4: Choose studies (Figure 2 (d)). The system lists all the studies
measuring at least two of the selected treatments on the selected outcome, and
the user can exclude the ones not desired based on their characteristics. Since
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the database contains only the studies included in the systematic review [9], all
the studies were included in this example.

Step 5: Choose treatment arms (Figure 2 (e)). When more than one match-
ing arm is available, the user must choose the appropriate one in this step based
on the arm’s characteristics. The user can go back to step 4 to exclude the study
if no appropriate arm is available. In this example, “placebo A” was chosen in
study PROGRESS2001 as it is the placebo compared to ACE inhibitor which
is included in the analysis.

Step 6: Overview (Figure 2 (f)). The final evidence network is shown in the
overview, and if the network is not connected, it is not possible to finish this
step. In that case, the user needs to go back to step 3 to exclude some of the
treatments. By clicking “Finish”, the system saves the analysis model.

The saved analysis, “Psaty CHD”, can be found under “network meta-
analysis” on the left side of ADDIS main screen. By selecting it, the user
will get an overview of the network meta-analysis dataset he or she just created.

4.2 Consistency analysis

To run the consistency model, the user should select the section “Consistency”
and then click the run button. Convergence of the model should be assessed
before drawing conclusions based on the results (see Section 4.4). We extended
the number of iterations once in order to achieve good convergence (by clicking
“No, extend” once). Table 1 gives the odds-ratios and the 95% Credibility
Interval (CrI) for all treatments relative to each other under the consistency
model. For example, the odds-ratio between ARB and Placebo is 0.94 with
Placebo as baseline and 1.07 with ARB as baseline, so incidence of CHD is
lower for ARB (not significant). The median random effects variance is 0.15
with 95% CrI (0.03, 0.34). Table 2 gives the probability of each alternative
to obtain each rank [4]. Rank 1 is the worst indicating the highest incidence
of CHD, and rank 7 is the best indicating the lowest incidence of CHD. For
example, according to this rank probability (Table 2), ACE inhibitor and α-
blockers are better alternatives compared to the other treatments as they have
much higher score on rank 7 (0.38 and 0.33 respectively), which indicates they
have much lower incidence of CHD. On the contrary, Placebo is the worst with
highest rank 1 probability (0.47) and lowest rank 7 probability (0.0). The rank
probabilities sum to one, both within a rank over all treatments and within a
treatment over all ranks. The results are also visualized in Figure 3.

4.3 Inconsistency analysis

In our example, trial selection was already taken care of by the systematic review
[9], and thus we could include all relevant studies without further consideration.
Thus, we go directly to statistical modeling to detect inconsistency.
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Table 1: Relative effects table from the consistency model. Odds-ratio (95%
Credibility Interval). ACE indicates angiotensin-converting enzyme; CCB indi-
cates calcium channel blockers; and ARB indicates angiotensin receptor block-
ers.

ACE inhibitor
1.26 1.19 1.18 1.03 1.04 1.34

(0.77, 2.06) (0.90, 1.58) (0.95, 1.47) (0.83, 1.26) (0.67, 1.60) (1.05, 1.72)

0.80
ARB

0.95 0.94 0.82 0.82 1.07
(0.48, 1.31) (0.63, 1.58) (0.57, 1.55) (0.50, 1.33) (0.44, 1.53) (0.67, 1.69)

0.84 1.05
β-blockers

0.99 0.86 0.87 1.12
(0.63, 1.11) (0.70, 1.58) (0.74, 1.32) (0.66, 1.12) (0.55, 1.37) (0.90, 1.40)

0.85 1.07 1.01
CCB

0.87 0.88 1.14
(0.68, 1.06) (0.65, 1.77) (0.76, 1.36) (0.70, 1.09) (0.57, 1.36) (0.88, 1.47)

0.97 1.23 1.16 1.15
Diuretics

1.01 1.31
(0.79, 1.20) (0.75, 1.99) (0.90, 1.51) (0.92, 1.43) (0.69, 1.47) (1.06, 1.62)

0.96 1.21 1.15 1.14 0.99
α-blockers

1.30
(0.63, 1.48) (0.65, 2.25) (0.73, 1.82) (0.73, 1.76) (0.68, 1.44) (0.84, 1.99)

0.74 0.94 0.89 0.88 0.76 0.77
Placebo

(0.58, 0.95) (0.59, 1.49) (0.72, 1.11) (0.68, 1.14) (0.62, 0.94) (0.50, 1.19)

Table 2: Probability for each alternative to be at each rank given the analysis
model and the data. Rank 1 means highest incidence of Coronary Heart Disease
and rank 7 the lowest. ACE indicates angiotensin-converting enzyme; CCB
indicates calcium channel blockers; and ARB indicates angiotensin receptor
blockers.

Drug Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7

ACE inhibitor 0.00 0.01 0.03 0.07 0.21 0.30 0.38

ARB 0.35 0.19 0.15 0.10 0.06 0.06 0.09

b-Blockers 0.05 0.23 0.37 0.19 0.10 0.05 0.02

CCB 0.07 0.17 0.21 0.35 0.15 0.05 0.01

Diuretics 0.00 0.01 0.03 0.10 0.30 0.39 0.17

a-Blockers 0.06 0.07 0.08 0.14 0.17 0.15 0.33

Placebo 0.47 0.33 0.14 0.04 0.01 0.00 0.00

4.3.1 Node split model

To run the node split model, the user should select the section “Node Split”
and then click “Run all node-split models” or click the run button for each
node split model separately. Convergence of each model should be assessed
before drawing conclusions based on the results (see Section 4.4). Table 3 lists
the relative effect from direct and indirect evidence and the significance level
of the evidence. The p-values show no significant difference between the direct
effect and indirect effect. We present the density plots of the best comparison
(β-blockers vs. Placebo with p=0.95) and the worst comparison (ACE inhibitor
vs. β-blockers with p=0.09) in Figure 4a and 4b, respectively. We can see that
in the best comparison, the relative effect plots from direct evidence, indirect
evidence, and consistency model resemble each other, while the ones in the worst
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Figure 3: Visualized rank probabilities. ACE indicates angiotensin-converting
enzyme and ARB indicates angiotensin receptor blockers.

comparison are more divergent. In general, the results from the node split model
show no significant inconsistency is present in this dataset.

Table 3: Node splitting model. Log odds-ratio (95% credibility interval). ACE
indicates angiotensin-converting enzyme; CCB indicates calcium channel block-
ers; and ARB indicates angiotensin receptor blockers.

Name Direct effect Indirect effect Overall P
d.ACE inhibitor.Diurectics 0.06(-0.17,0.31) -0.16(-0.43,0.17) 0.02(-0.19,0.24) 0.23

d.ACE inhibitor.Placebo 0.09(-0.46,0.62) 0.36(0.08,0.64) 0.29(0.04,0.54) 0.38

d.b-blockers.ACE inhibitor 0.20(-0.32,0.74) -0.31(-0.64,-0.01) -0.18(-0.45,0.10) 0.09

d.b-blockers.Diuretics -0.47(-0.97,-0.01) -0.05(-0.34,0.22) -0.16(-0.41,0.11) 0.11

d.b-blockers.Placebo 0.10(-0.17,0.35) 0.09(-0.33,0.51) 0.11(-0.11,0.33) 0.95

d.CCB.ACE inhibitor -0.22(-0.56,0.02) 0.02(-0.37,0.43) -0.15(-0.40,0.04) 0.27

d.CCB.b-blockers -0.03(-0.80,0.74) 0.03(-0.33,0.32) 0.03(-0.30,0.29) 0.89

d.CCB.Diuretics -0.06(-0.36,0.21) -0.20(-0.61,0.13) -0.13(-0.38,0.07) 0.48

d.CCB.Placebo 0.31(-0.26,0.90) 0.09(-0.26,0.36) 0.14(-0.15,0.37) 0.47

d.Diuretics.Placebo 0.30(0.04,0.56) 0.25(-0.08,0.59) 0.27(0.05,0.47) 0.80
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(a) b-blockers vs. Placebo

(b) ACE inhibitor vs. b-blockers

Figure 4: Density plot of direct and indirect evidence . The red line represents
the evidence from direct comparisons, the blue line represents the evidence
from indirect comparisons, and the green line represents the evidence from the
consistency analysis. ACE indicates angiotensin-converting enzyme.
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4.3.2 Inconsistency model

To run the inconsistency model, the user should select the section “Inconsis-
tency” and then click the run button. Convergence of the model should be
assessed before drawing conclusions based on the results (see Section 4.4). We
extended the number of iterations twice in order to achieve good convergence
(by clicking “No, extend” twice). The inconsistency factors (Table 4) were cal-
culated as median and 95% credibility interval. From the results we can see
that all the intervals include 0 which suggests no significant inconsistency. Even
in the most extreme inconsistency factor, 0.08 (-0.16, 0.63), the median value
is within one standard deviation from zero. The inconsistency variance is not
much different from the random effects variance (Table 5). Therefore, the re-
sults show no relevant inconsistency, which indicates that the studies included
in these comparisons did not lead to inconsistencies.

In addition, the inconsistency model also provides a relative effects table
which can be compared to the one from the consistency model (Table 1). In
this example, the relative effects from inconsistency model are comparable to
the ones from consistency table, indicating no relevant inconsistency. Note that
the consistency assumption is critical for decision making and so the results of
an inconsistency model should never be used to draw conclusions about the
relative effects of the included treatments.

Table 4: Inconsistency factors. CrI indicates credibility interval; ACE indicates
angiotensin-converting enzyme; CCB indicates calcium channel blockers; and
ARB indicates angiotensin receptor blockers.

Cycle Median (95% CrI)
ACE inhibitor, β-blockers, CCB -0.07(-0.54,0.17)

ACE inhibitor, CCB, β-blockers, Diuretics -0.06(-0.56,0.21)
ACE inhibitor, CCB, β-blockers, Placebo, Diuretics 0.02(-0.37,0.42)

β-blockers, CCB, Diuretics 0.08(-0.16,0.63)
β-blockers, CCB, Diuretics, Placebo 0.01(-0.29,0.38)

CCB, Diuretics, Placebo -0.03(-0.47,0.27)

Table 5: Variance calculation. CrI indicates credibility interval.

Parameter Median (95% CrI)
Random Effects Variance 0.15(0.04,0.34)
Inconsistency Variance 0.17(0.01,0.66)

4.4 Convergence diagnostics

When ADDIS asks to assess convergence (Figure 5), the user should click the
button “show convergence”. Then, ADDIS will show the convergence assess-
ment dialog (Figure 6). If convergence is reached, the user could click “Yes,
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finish” to finish the MCMC simulation. Otherwise, the user could click “No,
extend” to let the model run for more iterations until convergence is adequate.
The PRSF in the convergence parameter table is just a snapshot result at the
end of the simulation. To check whether the convergence is reached stably or
only temporarily, we need to look at the convergence plots. By double clicking a
parameter in the convergence table, the user can obtain the convergence plots.
For example, Figure 6 shows the convergence table of the consistency model and
Figure 7 shows the convergence plot of the parameter of β-blockers vs. ACE
inhibitors. From the plot we can see that the PSRF is quite far away from one
in the beginning before approximate convergence has been reached and close
to one after 5,000 iterations, and the convergence is very stable after 50,000
iterations.

Figure 5: The progress indication after the simulation phase has been completed.
The user is prompted to assess convergence.

Figure 6: Convergence parameter table from the consistency model.

4.5 Overall results

As there is no relevant inconsistency in the evidence (as determined by Psaty
et al [9] for the remaining outcomes), we can use the consistency model to draw
conclusion about the relative effects of the included treatments. The relative
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Figure 7: Convergence plot of chain β-blockers and Angiotensin-Converting En-
zyme inhibitors. PSRF indicates potential scale reduction factor. The iteration
number is thinned by factor 10, so for example iteration 5,000 in the figure
actually corresponds with iteration 50,000.

effects (odds-ratio) between Diuretics and other anti-hypertensive therapies are
plotted in Figure 8 based on a consistency analysis in ADDIS

5 Discussion

In this report, we introduced ADDIS as an automated way to perform network
meta-analysis. ADDIS is an integrated software application providing decision
support based on clinical trial results. Besides creating network meta-analysis,
ADDIS also enables the construction of pair-wise meta-analysis and benefit-risk
decision models.

For network meta-analysis, ADDIS supports both continuous and dichoto-
mous outcomes, and provides two ways to assess inconsistency. The user in-
terface facilitates convergence checking and interpretation of the results, with
figures and tables tailored to each model.

5.1 Analysis of the example dataset

To illustrate the application of ADDIS for network meta-analysis, the aggregated
data from a systematic review were used. The inconsistency analysis shows
no significant inconsistency between the direct evidence and indirect evidence,
therefore we assume that the consistency model is valid. Otherwise, there would
be a need to investigate the source for inconsistency from the involved studies
and exclude them and run the model until there is no significant inconsistency.

Psaty et al calculated the logarithm of the risk-ratio (RR), while ADDIS
calculates the logarithm of the odds-ratio (OR). The OR and RR are similar
when the event is rare, but differ substantially when the event is common.
However, in network meta-analysis, the log OR is more suitable than the log
RR because the former has better mathematical properties and often reflects the
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underlying mechanisms more effectively. It does not matter whether we analyze
the event or non-event with OR, but with RR it requires care in choosing event
or non-event. This is because the OR of an event is reciprocal with the OR of
the corresponding non-event, which makes the calculation much easier.

The relative effects based on consistency model are consistent between the
results from ADDIS and the ones from the systematic review. There are some
small differences due to different ways to deal with some treatment arms. The
differences mainly focus on Diuretics vs. β-Blockers (Figure 8b) and Diuretics
vs. ARB (Figure 8e) on outcome CHF. Although neither of them reaches a sig-
nificant level, the results show the opposite favorable alternative. The difference
on Diuretics vs β-Blockers is due to the way the treatment arm “β-blocker or di-
uretics” was analyzed. There are five studies including “β-blocker or diuretics”
as a single treatment group in the systematic review. This treatment arm was
assessed as two separate treatments by weighing 68% to β-blocker and 32% to
diuretics because this allocation was reported in one study. However, how the
other four studies treat it is unknown. Therefore, this arm was excluded in our
network meta-analysis. This could also influence the results between Diuretics
and ARB because there is no direct evidence comparing them. ARB was only
compared directly with Placebo, β-Blockers and CCB. Therefore the results in
Figure 8e are estimated through indirect evidence, such as, ARB is compared
with β-Blockers and β-Blockers is compared with Diuretics. Since the compari-
son between β-Blockers and Diuretics is influenced by the mixed arm “β-blocker
or diuretics”, the comparison between ARB and Diuretics is also influenced.

5.2 Future work

In the future, ADDIS will enable the analysis of more complicated data, such
as survival data (time-to-event data), and will enable the generation of Forest
plots for relative effects on pair-wise comparisons. It will be possible to stratify
treatments by dose. For example, currently in ADDIS, treatment A is defined
as drug X, but in the future, treatment A can be defined as low-dose drug X
and treatment B can be defined as high-dose drug X.

Future work will also include additional methods to assess convergence and
run length, new tools to make it easier to identify the studies that are causing
inconsistency (e.g. independent mean effects model), tools for study selection
and treatment definition, and meta-regression to model the effect of covariates
(e.g. to correct for trial duration or dosage).
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Figure 8: Relative effects between Diuretics and other treatments. Odds-ratio
below one favors Diuretics. CHD indicates coronary heart disease; CHF indi-
cates congestive heart failure; CVD indicates cardiovascular disease; ACE indi-
cates angiotensin-converting enzyme; CCB indicates calcium channel blockers;
and ARB indicates angiotensin receptor blockers.
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