Summer Course Mathematics

Facts Wednesday

1. A function is a 'rule' that assigns a unique y-value to every x-value in the given domain.

Example: $y=f(x)=x^{2}-5 . x$ is the independent variable, y is the dependent variable.
2. Domain of a function: Set of all values for the independent variable(s) for the function is defined.
Range: Set of all possible outcomes of the function.
If a function has name f, common notation for the domain and the range are D_{f} and R_{f}, respectively.
3. A function f is increasing if $x_{1}<x_{2}$ implies $f\left(x_{1}\right) \leq f\left(x_{2}\right)$, with $x_{1}, x_{2} \in D_{f}$.

A function f is strictly increasing if $x_{1}<x_{2}$ implies $f\left(x_{1}\right)<f\left(x_{2}\right)$, with $x_{1}, x_{2} \in D_{f}$.
A function f is decreasing if $x_{1}<x_{2}$ implies $f\left(x_{1}\right) \geq f\left(x_{2}\right)$, with $x_{1}, x_{2} \in D_{f}$.
A function f is strictly decreasing if $x_{1}<x_{2}$ implies $f\left(x_{1}\right)>f\left(x_{2}\right)$, with $x_{1}, x_{2} \in D_{f}$.
4. The graph of a function f shows the set of all points $(x, f(x))$, with x in the domain of f.
5. The general form of a linear function is

$$
y=f(x)=a x+b .
$$

The slope of a linear function is a, the intercept is b.
6. If two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on the graph of a linear function are known, the slope of the linear function can be determined:

$$
a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { or } \frac{y_{1}-y_{2}}{x_{1}-x_{2}} .
$$

After determining the slope a, the intercept b can also be determined using of the two given points.
7. Properties of a quadratic function $y=f(x)=a x^{2}+b x+c, a \neq 0, x \in D_{f}$:

- Three parameters: a, b, and c.
- Two variables: x independent, y dependent.
- The graph of a quadratic function has an axis of symmetry.
- The graph of a quadratic function either has a minimum or a maximum.
- If the coefficient a of x^{2} is positive, the graph/function has a minimum.
- If the coefficient a of x^{2} is negative, graph/function has a maximum.

8. General power function:

$$
f(x)=A x^{r}, \quad x>0, r \in \mathbb{R}, A \in \mathbb{R} .
$$

9. General exponential function:

$$
f(t)=A a^{t}, \quad t \in \mathbb{R}, a>0, A \in \mathbb{R}
$$

Properties:

- If t increases by $1, f(t)$ increases or decreases by the fixed factor a per unit of time.
- $f(0)=A$.
- If $a>1$, then f is increasing.
- If $0<a<1$, then f is decreasing.
- If $a=1$, then f is constant.
- If $a=1+\frac{p}{100}$, where $p>0$ and $A>0$, then $f(x)$ will increase by $p \%$ per unit of time.
- If $a=1-\frac{p}{100}$, where $0<p<100$ and $A>0$, then $f(x)$ will decrease by $p \%$ per unit of time.

10. The doubling time for an exponential function is the time it takes for an increasing exponential function (i.e., $A>0$ and $a>0$) to double its value. It is the solution for t of $A^{t}=2$.
11. The most important exponential function in mathematics is the exponential function with base e:

$$
f(x)=\mathrm{e}^{x} .
$$

This function is called the natural exponential function. The number e is an irrational number. It is approximately equal to

$$
\mathrm{e}=2.718281828459045 \ldots
$$

12. Rules for powers obviously also apply to the natural exponential function:

- $\mathrm{e}^{s} \mathrm{e}^{t}=\mathrm{e}^{s+t}$.
- $\frac{\mathrm{e}^{s}}{\mathrm{e}^{t}}=\mathrm{e}^{s-t}$.
- $\left(\mathrm{e}^{s}\right)^{t}=\mathrm{e}^{s t}$.

13. If $\mathrm{e}^{u}=a$, we call u the natural logarithm of a, and we write $u=\ln a$.
14. Properties of the natural logarithmic function \ln :

- $\ln (x y)=\ln x+\ln y, \quad x, y>0$.
- $\ln \frac{x}{y}=\ln x-\ln y, \quad x, y>0$.
- $\ln x^{p}=p \ln x, \quad x>0$.
- $\ln 1=0$.
- $\ln \mathrm{e}=1$.
- $x=\mathrm{e}^{\ln x}, \quad x>0$.
- $\ln \mathrm{e}^{x}=x$.

Note that $\ln (x+y)$ and $\ln (x-y)$ cannot be rewritten.
15. If $a^{u}=x, a>0$, we call u the logarithm of x to base a, and we write $u=\log _{a} x$.

Note that $\log _{\mathrm{e}}$ is equivalent to \ln.
16. A logarithm to a certain base a can be rewritten in terms of a logarithm to any other base b :

$$
\log _{a} x=\frac{\log _{b} x}{\log _{b} a}=\frac{\ln x}{\ln a} .
$$

17. Equations with exponential functions can be solved by taking the natural logarithm on both sides and applying the rules for the natural logarithmic function.
Example: $2^{x}=31 \Rightarrow \ln 2^{x}=\ln 31 \Rightarrow x \ln 2=\ln 31 \Rightarrow x=\frac{\ln 31}{\ln 2} \approx 4.95$.
18. If an equation contains an exponential function, and if we can write both sides with the same base, we don't need logarithms to solve the equation.
Example: $2^{x}=32 \Rightarrow 2^{x}=2^{5} \Rightarrow x=5$.
