Summer Course Mathematics

Facts Thursday

- 1. Rules for shifting the graph of a function f(x):
 - If y = f(x) is replaced by y = f(x) + c with c > 0, the graph is moved upwards by c units.
 - If y = f(x) is replaced by y = f(x) c with c > 0, the graph is moved downwards by c units.
 - If y = f(x) is replaced by y = f(x + c) with c > 0, the graph is moved c units to the left.
 - If y = f(x) is replaced by y = f(x c) with c > 0, the graph is moved c units to the right.
 - If y = f(x) is replaced by y = cf(x) with c > 0, the graph is stretched vertically with factor c.
 - If y = f(x) is replaced by y = -f(x), the graph is reflected through the x-axis.
 - If y = f(x) is replaced by y = f(-x), the graph is reflected through the y-axis.
- 2. Functions can be added, subtracted, multiplied and divided:
 - (f+g)(x) = f(x) + g(x).
 - (f-g)(x) = f(x) g(x).
 - $(fg)(x) = f(x) \cdot g(x)$.
 - $(f/g)(x) = \frac{f(x)}{g(x)}$.
- 3. The slope of a function f(x) for a certain x is defined as the slope of the tangent to graph of f(x) at the point (x, f(x)).

The slope of the tangent to the graph of f(x) at a certain x is called the derivative of f(x) at x and is denoted by f'(x):

f'(x) = slope of the tangent to the graph of f(x) at (x, f(x)).

The derivative f'(x) of f(x) is defined as a limit:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

- 4. Various notation for the derivative of a function y = f(x) used in mathematics:
 - f'(x). • $\frac{dy}{dx} = dy/dx$. • $\frac{df(x)}{dx} = df(x)/dx$. • $\frac{d}{dx}f(x)$.

- 5. Consider a function f that is defined in an interval I and two numbers x_1 and x_2 in that interval.
 - If $f(x_2) \ge f(x_1)$ whenever $x_2 > x_1$, then f is increasing in I.
 - If $f(x_2) > f(x_1)$ whenever $x_2 > x_1$, then f is strictly increasing in I.
 - If $f(x_2) \leq f(x_1)$ whenever $x_2 > x_1$, then f is decreasing in I.
 - If $f(x_2) < f(x_1)$ whenever $x_2 > x_1$, then f is strictly decreasing in I.
- 6. The derivative f'(x) of a function f(x) gives the slope the function f(x) for any value of x.
 - A positive slope is equivalent to an increasing function.
 - A negative slope is equivalent to a decreasing function.

Consequence:

$f'(x) \ge 0$ for all x in the interval I	\iff	f is increasing in I
$f'(x) \leq 0$ for all x in the interval I	\iff	f is decreasing in I
f'(x) = 0 for all x in the interval I	\iff	f is constant in I

7. Rules for differentiation:

f(x) = A	\Rightarrow	f'(x) = 0	(Constant)
f(x) = A + g(x)	\Rightarrow	f'(x) = g'(x)	(Additive constant)
f(x) = Ag(x)	\Rightarrow	f'(x) = Ag'(x)	(Multiplicative constant)
$f(x) = x^a$	\Rightarrow	$f'(x) = ax^{a-1}$	(Power rule)
f(x) = p(x) + q(x)	\Rightarrow	f'(x) = p'(x) + q'(x)	(Sum rule)
$f(x) = p(x) \cdot q(x)$	\Rightarrow	$f'(x) = p'(x) \cdot q(x) + p(x) \cdot q'(x)$	(Product rule)
$f(x) = \frac{p(x)}{q(x)}$	\Rightarrow	$f'(x) = \frac{p'(x) \cdot q(x) - p(x) \cdot q'(x)}{(q(x))^2}$	(Quotient rule)
f(x) = g(u(x))	\Rightarrow	$f'(x) = g'(u(x)) \cdot u'(x)$	(Chain rule)
$f(x) = e^{g(x)}$	\Rightarrow	$f'(x) = e^{g(x)}g'(x)$	(Exponential function)