Summer Course Mathematics

Facts Thursday

1. Rules for shifting the graph of a function $f(x)$:

- If $y=f(x)$ is replaced by $y=f(x)+c$ with $c>0$, the graph is moved upwards by c units.
- If $y=f(x)$ is replaced by $y=f(x)-c$ with $c>0$, the graph is moved downwards by c units.
- If $y=f(x)$ is replaced by $y=f(x+c)$ with $c>0$, the graph is moved c units to the left.
- If $y=f(x)$ is replaced by $y=f(x-c)$ with $c>0$, the graph is moved c units to the right.
- If $y=f(x)$ is replaced by $y=c f(x)$ with $c>0$, the graph is stretched vertically with factor c.
- If $y=f(x)$ is replaced by $y=-f(x)$, the graph is reflected through the x -axis.
- If $y=f(x)$ is replaced by $y=f(-x)$, the graph is reflected through the y-axis.

2. Functions can be added, subtracted, multiplied and divided:

- $(f+g)(x)=f(x)+g(x)$.
- $(f-g)(x)=f(x)-g(x)$.
- $(f g)(x)=f(x) \cdot g(x)$.
- $(f / g)(x)=\frac{f(x)}{g(x)}$.

3. The slope of a function $f(x)$ for a certain x is defined as the slope of the tangent to graph of $f(x)$ at the point $(x, f(x))$.
The slope of the tangent to the graph of $f(x)$ at a certain x is called the derivative of $f(x)$ at x and is denoted by $f^{\prime}(x)$:

$$
f^{\prime}(x)=\text { slope of the tangent to the graph of } f(x) \text { at }(x, f(x)) .
$$

The derivative $f^{\prime}(x)$ of $f(x)$ is defined as a limit:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

4. Various notation for the derivative of a function $y=f(x)$ used in mathematics:

- $f^{\prime}(x)$.
- $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{d} y / \mathrm{d} x$.
- $\frac{\mathrm{d} f(x)}{\mathrm{d} x}=\mathrm{d} f(x) / \mathrm{d} x$.
- $\frac{\mathrm{d}}{\mathrm{d} x} f(x)$.

5. Consider a function f that is defined in an interval I and two numbers x_{1} and x_{2} in that interval.

- If $f\left(x_{2}\right) \geq f\left(x_{1}\right)$ whenever $x_{2}>x_{1}$, then f is increasing in I.
- If $f\left(x_{2}\right)>f\left(x_{1}\right)$ whenever $x_{2}>x_{1}$, then f is strictly increasing in I.
- If $f\left(x_{2}\right) \leq f\left(x_{1}\right)$ whenever $x_{2}>x_{1}$, then f is decreasing in I.
- If $f\left(x_{2}\right)<f\left(x_{1}\right)$ whenever $x_{2}>x_{1}$, then f is strictly decreasing in I.

6. The derivative $f^{\prime}(x)$ of a function $f(x)$ gives the slope the function $f(x)$ for any value of x.

- A positive slope is equivalent to an increasing function.
- A negative slope is equivalent to a decreasing function.

Consequence:

$$
\begin{aligned}
& f^{\prime}(x) \geq 0 \text { for all } x \text { in the interval } I \Longleftrightarrow f \text { is increasing in } I \\
& f^{\prime}(x) \leq 0 \text { for all } x \text { in the interval } I \Longleftrightarrow f \text { is decreasing in } I \\
& f^{\prime}(x)=0 \text { for all } x \text { in the interval } I \Longleftrightarrow f \text { is constant in } I
\end{aligned}
$$

7. Rules for differentiation:

$$
\begin{array}{llll}
f(x)=A & \Rightarrow & f^{\prime}(x)=0 & \\
f(x)=A+g(x) & \Rightarrow & f^{\prime}(x)=g^{\prime}(x) & \text { (Constant) } \\
f(x)=A g(x) & \Rightarrow & f^{\prime}(x)=A g^{\prime}(x) & \\
f(x)=x^{a} & \Rightarrow & f^{\prime}(x)=a x^{a-1} & \text { (Mdditive constant) } \\
f(x)=p(x)+q(x) & \Rightarrow & f^{\prime}(x)=p^{\prime}(x)+q^{\prime}(x) & \text { (Sum rultiplicative constant) } \\
f(x)=p(x) \cdot q(x) & \Rightarrow & f^{\prime}(x)=p^{\prime}(x) \cdot q(x)+p(x) \cdot q^{\prime}(x) & \text { (Product rule) } \\
f(x)=\frac{p(x)}{q(x)} & \Rightarrow & f^{\prime}(x)=\frac{p^{\prime}(x) \cdot q(x)-p(x) \cdot q^{\prime}(x)}{(q(x))^{2}} & \text { (Quotient rule) } \\
f(x)=g(u(x)) & \Rightarrow & f^{\prime}(x)=g^{\prime}(u(x)) \cdot u^{\prime}(x) & \\
f(x)=\mathrm{e}^{g(x)} & \Rightarrow & f^{\prime}(x)=\mathrm{e}^{g(x)} g^{\prime}(x) & \text { (Chain rule) } \\
\text { (Exponential function) }
\end{array}
$$

