Summer Course Mathematics

Facts Friday

1. Extreme points:

- If a differentiable function goes from decreasing to increasing at the point $x=c$, the first derivative is zero $\left(f^{\prime}(c)=0\right)$ and the extreme is a minimum.
- If a differentiable function goes from increasing to decreasing at the point $x=c$, the first derivative is zero $\left(f^{\prime}(c)=0\right)$ and the extreme is a maximum.
- But: If at c the first derivative is zero $\left(f^{\prime}(c)=0\right)$ and the function goes from increasing to increasing or the function goes from decreasing to decreasing, there is not an extreme.
- A maximum point c is a global maximum point of a function f with domain D if

$$
f(x) \leq f(c) \text { for all } x \in D
$$

- A minimum point c is a global minimum point of a function f with domain D if

$$
f(x) \geq f(c) \text { for all } x \in D .
$$

- If an extreme point is not a global extreme point, it is a local extreme point.

2. A procedure to find the extreme points of a differentiable function f defined on an open interval I:

- Solve $f^{\prime}(x)=0$. The solutions are possible locations for extreme points.
- Determine (using a sign diagram) the sign variation of f^{\prime}.
- Conclude where the function is increasing and where it is decreasing.
- Indicate which stationary point is a maximum, a minimum, or neither.

