Summer Course Mathematics

Exercises Thursday

Chapter 5: Properties of Functions

§ 1 Shifting Graphs

1. Use the graphs of $y=x, y=x^{2}, y=\sqrt{x}$, and $y=\frac{1}{x}$ and the rules for shifting graphs to sketch the graphs of the following functions:
a. $y=x-2$
b. $y=x^{2}+3$
c. $y=2+\sqrt{x-2}$
d. $y=1+\frac{1}{x-1}$
2. The graph of the function $y=f(x)=-(x+2)^{2}(x-1)$ is shown several times on the next page. Use these graphs to sketch the graphs of the following functions:
a. $y=f(x+2)$
b. $y=f(x)-1$
c. $y=-f(x)$
d. $y=f(-x)$
§ 2 New Functions from Old
3. Sketch the graphs of the following functions:
a. $y=x+\frac{1}{x}$
b. $y=x+\mathrm{e}^{-x}$
c. $y=x+\frac{1}{x^{2}}$
4. If $f(x)=x^{2}+x$ and $g(x)=x^{2}-x$, compute:
a. $(f+g)(x)$
b. $(f-g)(x)$
c. $(f g)(x)$
d. $(f / g)(x)$, do not forget to simplify
e. $f(g(1))$
f. $g(f(1))$
g. $f(g(x))$
h. $g(f(x))$

Chapter 6: Differentiation

§ 2 Tangents and Derivatives

1. The derivative of the function $f(x)=x^{2}$ equals $f^{\prime}(x)=2 x$. Use this to determine the equation of the tangent line to the graph of the function $f(x)=x^{2}$ at the point $(3,9)$.
2. Consider the function $f(x)=3 x^{2}$.
a. Determine $f(4+h)-f(4)$.
b. Use the result to determine $\frac{f(4+h)-f(4)}{h}$.
c. Use the result to determine $f^{\prime}(4)$.
d. Translate the outcome into words.
§ 3 Increasing and Decreasing Functions
3. The function f is defined as $f(x)=3 x^{2}-2 x+8$.
a. Determine the derivative $f^{\prime}(x)$ of this function.
b. Use this derivative to determine where the function $f(x)$ is increasing/decreasing.
4. The function f is defined as $f(x)=1 \frac{2}{3} x^{3}-3 x^{2}+x-8$.
a. Determine the derivative $f^{\prime}(x)$ of this function.
b. Use this derivative to determine where the function $f(x)$ is increasing/decreasing.
§ 6 Simple Rules for Differentiation
5. Determine the derivatives $\frac{\mathrm{d} y}{\mathrm{~d} x}$ of the following functions y of x :
a. $y=0$
b. $y=x^{2}$
c. $y=3 x^{4}$
d. $y=4^{2}$
e. $y=x^{2} \cdot 3 \cdot x^{5}$
6. Determine the derivatives of the following functions. The function $g(x)$ is an arbitrary function that has not been specified yet. Its derivative can be denoted by $g^{\prime}(x)$.
a. $f(x)=3 g(x)+5$
b. $f(x)=a g(x)+b$
c. $f(x)=-\frac{1}{2} g(x)+2 x$
d. $f(x)=\frac{4(g(x)+12)}{3}$
e. $f(x)=a g(x)+b x^{p}, p \neq 0$
7. Determine the derivatives $\frac{\mathrm{d} y}{\mathrm{~d} x}$ of the following functions y of x :
a. $y=x^{5}$
b. $y=2 x^{10}$
c. $y=x^{5} \cdot 7$
d. $y=x^{-2}$
e. $y=\frac{5}{x^{3}}$
f. $y=\frac{5 x^{6}}{12}$
g. $y=-\frac{-2}{x^{3} \times 5}$
h. $y=\frac{x^{2}}{x \sqrt{x}}$
8. Compute the following:
a. $\frac{\mathrm{d}}{\mathrm{d} r}(2 \pi r)$
b. $\frac{\mathrm{d}}{\mathrm{d} y}(y \sqrt{4 y})$
c. $\frac{\mathrm{d}}{\mathrm{d} t}\left(5 t^{2}\right)$
§ 7 Sums, Products, and Quotients
9. Differentiate the following functions:
a. $f(x)=\left(3 x^{2}-1\right)\left(x^{4}-2\right)$
b. $g(x)=\left(x^{4}+4\right)\left(\frac{4}{x}+x^{4}\right)$
10. Differentiate the following functions:
a. $f(x)=\frac{x-1}{x+1}$
b. $g(x)=\frac{2+x}{x^{6}}$
c. $h(x)=\frac{4 x-7}{3 x+2}$
§ 8 The Chain Rule
11. The function $f(x)=\left(1-x^{2}\right)^{3}$ is given.
a. Differentiate this function using the chain rule. Start with defining a function u of x.
b. Differentiate this function without using the chain rule. Verify that the derivatives are equivalent.

Continue with the following problems in the book:

- Chapter 5, § 1: Problem 5.
- Chapter 5, § 2: Problem 1.
- Chapter 6, § 1: Problems 1, 2.
- Chapter 6, § 7: Problems 1, 6.

