Exercises Thursday

Chapter 5: Properties of Functions

- § 1 Shifting Graphs
 - Use the graphs of y = x, y = x², y = √x, and y = ¹/_x and the rules for shifting graphs to sketch the graphs of the following functions:
 a. y = x 2 b. y = x² + 3 c. y = 2 + √x 2 d. y = 1 + ¹/_{x-1}
 - 2. The graph of the function y = f(x) = -(x + 2)²(x 1) is shown several times on the next page. Use these graphs to sketch the graphs of the following functions:
 a. y = f(x + 2) b. y = f(x) 1 c. y = -f(x) d. y = f(-x)
- § 2 New Functions from Old
 - 1. Sketch the graphs of the following functions: a. $y = x + \frac{1}{x}$ b. $y = x + e^{-x}$ c. $y = x + \frac{1}{x^2}$
 - 2. If $f(x) = x^2 + x$ and $g(x) = x^2 x$, compute: a. (f+g)(x) **b.** (f-g)(x) c. (fg)(x) **d.** (f/g)(x), do not forget to simplify e. f(g(1)) **f.** g(f(1)) **g.** f(g(x)) h. g(f(x))

Chapter 6: Differentiation

- § 2 Tangents and Derivatives
 - 1. The derivative of the function $f(x) = x^2$ equals f'(x) = 2x. Use this to determine the equation of the tangent line to the graph of the function $f(x) = x^2$ at the point (3,9).
 - 2. Consider the function $f(x) = 3x^2$. a. Determine f(4+h) - f(4).
 - b. Use the result to determine $\frac{f(4+h) f(4)}{h}$.
 - c. Use the result to determine f'(4).
 - d. Translate the outcome into words.
- § 3 Increasing and Decreasing Functions
 - The function f is defined as f(x) = 3x² 2x + 8.
 a. Determine the derivative f'(x) of this function.
 b. Use this derivative to determine where the function f(x) is increasing/decreasing.
 - 2. The function f is defined as f(x) = 1²/₃x³ 3x² + x 8.
 a. Determine the derivative f'(x) of this function.
 - b. Use this derivative to determine where the function f(x) is increasing/decreasing.

- § 6 Simple Rules for Differentiation
 - 1. Determine the derivatives $\frac{dy}{dx}$ of the following functions y of x: **a.** y = 0 b. $y = x^2$ c. $y = 3x^4$ **d.** $y = 4^2$ **e.** $y = x^2 \cdot 3 \cdot x^5$
 - 2. Determine the derivatives of the following functions. The function g(x) is an arbitrary function that has not been specified yet. Its derivative can be denoted by g'(x).
 a. f(x) = 3g(x) + 5 b. f(x) = ag(x) + b c. f(x) = -1/2g(x) + 2x
 d. f(x) = 4(g(x) + 12)/3 e. f(x) = ag(x) + bx^p, p ≠ 0
 - 3. Determine the derivatives $\frac{dy}{dx}$ of the following functions y of x: a. $y = x^5$ **b.** $y = 2x^{10}$ c. $y = x^5 \cdot 7$ d. $y = x^{-2}$ **e.** $y = \frac{5}{x^3}$ f. $y = \frac{5x^6}{12}$ g. $y = -\frac{-2}{x^3 \times 5}$ **h.** $y = \frac{x^2}{x\sqrt{x}}$
 - 4. Compute the following: a. $\frac{d}{dr}(2\pi r)$ **b.** $\frac{d}{dy}(y\sqrt{4y})$ c. $\frac{d}{dt}(5t^2)$
- § 7 Sums, Products, and Quotients
 - 1. Differentiate the following functions:

a.
$$f(x) = (3x^2 - 1)(x^4 - 2)$$
 b. $g(x) = (x^4 + 4)\left(\frac{4}{x} + x^4\right)$

2. Differentiate the following functions:
a.
$$f(x) = \frac{x-1}{x+1}$$
 b. $g(x) = \frac{2+x}{x^6}$ c. $h(x) = \frac{4x-7}{3x+2}$

- § 8 The Chain Rule
 - The function f(x) = (1 x²)³ is given.
 a. Differentiate this function using the chain rule. Start with defining a function u of x.
 b. Differentiate this function without using the chain rule. Verify that the derivatives are equivalent.

Continue with the following problems in the book:

- Chapter 5, § 1: Problem 5.
- Chapter 5, § 2: Problem 1.
- Chapter 6, § 1: Problems 1, 2.
- Chapter 6, § 7: Problems 1, 6.