Chapter 6: Differentiation

§ 8 The Chain Rule

- 1. Use the chain rule to determine dy/dx for the following functions:
 - **a.** $y = (x^3 + 5)^7$ **b.** $y = (3x^2 + 4x + 5)^2 + \frac{1}{3x^2 + 4x + 5}$ **c.** $y = 6(x^3 + \frac{2}{x})^2 + 5(x^3 + \frac{2}{x}) + 7$
- 2. Determine the derivatives of the following functions:

a.
$$y = f(x) = \left(\frac{x+1}{x-1}\right)^7$$

b. $y = g(u) = 3u^2 \left(\frac{1}{u} + u^3\right)^4$

3. Assume that f is a differentiable function. Determine expressions for the derivatives of the following functions:
a. x² + f(x) = b. (f(x))² - ³/₂ = c. (x + f(x))³

a.
$$x^2 + f(x)$$
 b. $(f(x))^2 - \frac{3}{x}$ c. $(x + f(x))^3$
d. $x^2(f(x))^3$ **e.** $\sqrt{xf(x)}$ f. $\frac{f(x) + 1}{f(x) - 1}$

4. Use the chain rule to determine dy/dx for the following functions.

a.
$$y = 8(8 - x^3)^3$$

b. $y = 2\sqrt{1 - \frac{1}{x}}$

§ 10 Exponential Functions

1. Determine the derivatives of the following functions: **a.** $y = 2e^x + 3$ b. $y = \frac{3e}{e^x}$ c. $y = 4e^{-2x} + x^2 + 4$ **d.** $y = \frac{e^x}{e^{3x}}$ e. $y = (x^2 + 1)e^{3x}$ **f.** $y = (e^x + 3)^5$ **g.** $y = e^{x^2 + 4x + 3}$

Chapter 9: Optimization

§ 1 Extreme Points

- 1. Use non-calculus arguments to find the maximum or minimum points for the following functions:
 - a. $y = f(x) = (x-1)^2 + 4$ b. $y = g(x) = 4 - (x-1)^2$ c. $y = h(x) = \frac{12}{(x-2)^2 + 2}$ d. $y = k(x) = \frac{6}{2 - (x-2)^2}$
- 2. Use non-calculus arguments to find the maximum or minimum points for the following functions:

a.
$$y = l(x) = 4 + e^{1-x^2}$$

b. $y = m(x) = 1 + \ln(4 + x^2)$
c. $y = n(x) = 1 + \sqrt{1 + x^2}$
d. $y = p(x) = \frac{4}{1 + \sqrt{x - 1}}$

- § 2 Simple Tests for Extreme Points
 - 1. Describe in your own words the relation between f and f', if there is any, with respect to:
 - a. Sign of f and the behaviour of f'.
 - b. Sign of f' and the behaviour of f.
 - c. Zero of f and the behaviour of f'.
 - d. Zero of f' and the behaviour of f.
 - e. Explain why a sign diagram is useful in this setting.
 - **2.** The function f is defined as $f(x) = \frac{x}{e^x}$.
 - a. Determine the derivative f'(x) of f(x).
 - b. Determine the stationary points of f.
 - c. Determine the intervals where f increases and decreases.
 - d. Determine the extreme points (maximum and/or minimum points) of f.
 - **3.** Let $f(x) = \frac{x^2}{x^2 + 5}$. Determine f'(x) and use its sign variation to determine where f(x) is increasing and where it is decreasing.
 - 4. A firm's production function is $Q(L) = 24L^2 \frac{1}{10}L^3$, where L denotes the number of workers with $0 \le L \le 200$.
 - a. What size of the work force (let us denote this by L^*) maximizes the output Q(L)?
 - b. What size of the work force (let us denote this by L^{**}) maximizes the output per worker Q(L)/L?

§ 6 Local Extreme Points

- 1. Determine possible local extreme points (maxima and minima) for the following functions.
 - **a.** $f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 6x + 8.$ **b.** $g(x) = 2x^2 - 8x + 7.$ **c.** $h(x) = x^3 - 3x + 9.$ **d.** $p(x) = x - \frac{4}{x^2}.$ **e.** $q(x) = xe^{2x}.$ **f.** $r(x) = 3x^4 - 12x^3 - 24x^2 + 12.$
- **2.** Let $f(x) = \frac{x}{x^2 + 4}$.
 - a. Determine the derivative f'(x) of the function f(x).
 - b. Factorize f'(x) and use a sign diagram to determine its sign variation.
 - c. Determine the stationary points of the function f(x) and determine where it is increasing/decreasing.
 - d. Use your answer to c. to identify and classify the extreme points f(x).
- **3.** Let $f(x) = x^2 e^{\frac{1}{2}x^2 + 3x}$.
 - a. Determine the derivative f'(x) of the function f(x).
 - b. Factorize f'(x) and use a sign diagram to determine its sign variation.
 - c. Determine the stationary points of the function f(x) and determine where it is increasing/decreasing.
 - d. Use your answer to c. to identify and classify the extreme points of f(x).

Continue with the following problems in the book:

- Chapter 6, § 8: Problems 1, 10.
- Chapter 6, § 10: Problem 4.