Summer Course Mathematics

Exercises Friday

Chapter 6: Differentiation

§ 8 The Chain Rule

1. Use the chain rule to determine $\mathrm{d} y / \mathrm{d} x$ for the following functions:
a. $y=\left(x^{3}+5\right)^{7}$
b. $y=\left(3 x^{2}+4 x+5\right)^{2}+\frac{1}{3 x^{2}+4 x+5}$
c. $y=6\left(x^{3}+\frac{2}{x}\right)^{2}+5\left(x^{3}+\frac{2}{x}\right)+7$
2. Determine the derivatives of the following functions:
a. $y=f(x)=\left(\frac{x+1}{x-1}\right)^{7}$
b. $y=g(u)=3 u^{2}\left(\frac{1}{u}+u^{3}\right)^{4}$
3. Assume that f is a differentiable function. Determine expressions for the derivatives of the following functions:
a. $x^{2}+f(x)$
b. $(f(x))^{2}-\frac{3}{x}$
c. $(x+f(x))^{3}$
d. $x^{2}(f(x))^{3}$
e. $\sqrt{x f(x)}$
f. $\frac{f(x)+1}{f(x)-1}$
4. Use the chain rule to determine $\mathrm{d} y / \mathrm{d} x$ for the following functions.
a. $y=8\left(8-x^{3}\right)^{3}$
b. $y=2 \sqrt{1-\frac{1}{x}}$
§ 10 Exponential Functions
5. Determine the derivatives of the following functions:
a. $y=2 \mathrm{e}^{x}+3$
b. $y=\frac{3 \mathrm{e}}{\mathrm{e}^{x}}$
c. $y=4 \mathrm{e}^{-2 x}+x^{2}+4$
d. $y=\frac{\mathrm{e}^{x}}{\mathrm{e}^{3 x}}$
e. $y=\left(x^{2}+1\right) \mathrm{e}^{3 x}$
f. $y=\left(\mathrm{e}^{x}+3\right)^{5}$
g. $y=\mathrm{e}^{x^{2}+4 x+3}$

§ 1 Extreme Points

1. Use non-calculus arguments to find the maximum or minimum points for the following functions:
a. $\quad y=f(x)=(x-1)^{2}+4$
b. $y=g(x)=4-(x-1)^{2}$
c. $y=h(x)=\frac{12}{(x-2)^{2}+2}$
d. $y=k(x)=\frac{6}{2-(x-2)^{2}}$
2. Use non-calculus arguments to find the maximum or minimum points for the following functions:
a. $\quad y=l(x)=4+\mathrm{e}^{1-x^{2}}$
b. $y=m(x)=1+\ln \left(4+x^{2}\right)$
c. $y=n(x)=1+\sqrt{1+x^{2}}$
d. $y=p(x)=\frac{4}{1+\sqrt{x-1}}$
§ 2 Simple Tests for Extreme Points
3. Describe in your own words the relation between f and f^{\prime}, if there is any, with respect to:
a. Sign of f and the behaviour of f^{\prime}.
b. Sign of f^{\prime} and the behaviour of f.
c. Zero of f and the behaviour of f^{\prime}.
d. Zero of f^{\prime} and the behaviour of f.
e. Explain why a sign diagram is useful in this setting.
4. The function f is defined as $f(x)=\frac{x}{\mathrm{e}^{x}}$.
a. Determine the derivative $f^{\prime}(x)$ of $f(x)$.
b. Determine the stationary points of f.
c. Determine the intervals where f increases and decreases.
d. Determine the extreme points (maximum and/or minimum points) of f.
5. Let $f(x)=\frac{x^{2}}{x^{2}+5}$. Determine $f^{\prime}(x)$ and use its sign variation to determine where $f(x)$ is increasing and where it is decreasing.
6. A firm's production function is $Q(L)=24 L^{2}-\frac{1}{10} L^{3}$, where L denotes the number of workers with $0 \leq L \leq 200$.
a. What size of the work force (let us denote this by L^{*}) maximizes the output $Q(L)$?
b. What size of the work force (let us denote this by $L^{* *}$) maximizes the output per worker $Q(L) / L$?

§ 6 Local Extreme Points

1. Determine possible local extreme points (maxima and minima) for the following functions.
a. $\quad f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-6 x+8$.
b. $g(x)=2 x^{2}-8 x+7$.
c. $h(x)=x^{3}-3 x+9$.
d. $p(x)=x-\frac{4}{x^{2}}$.
e. $q(x)=x \mathrm{e}^{2 x}$.
f. $r(x)=3 x^{4}-12 x^{3}-24 x^{2}+12$.
2. Let $f(x)=\frac{x}{x^{2}+4}$.
a. Determine the derivative $f^{\prime}(x)$ of the function $f(x)$.
b. Factorize $f^{\prime}(x)$ and use a sign diagram to determine its sign variation.
c. Determine the stationary points of the function $f(x)$ and determine where it is increasing/decreasing.
d. Use your answer to c. to identify and classify the extreme points $f(x)$.
3. Let $f(x)=x^{2} \mathrm{e}^{\frac{1}{2} x^{2}+3 x}$.
a. Determine the derivative $f^{\prime}(x)$ of the function $f(x)$.
b. Factorize $f^{\prime}(x)$ and use a sign diagram to determine its sign variation.
c. Determine the stationary points of the function $f(x)$ and determine where it is increasing/decreasing.
d. Use your answer to c. to identify and classify the extreme points of $f(x)$.

Continue with the following problems in the book:

- Chapter 6, § 8: Problems 1, 10.
- Chapter 6, § 10: Problem 4.

