Reading directions for Syllabus RPE

Students for the training levels RPE and RPO VRS-C follow the lectures together, using the Syllabus available from the Groningen Academy for Radiation Protection (GARP), which is in principle intended for the RPE. However, a number of topics that are dealt with in this syllabus do not belong to the material for the training level RPO VRS-C. The numbers of Chapters and Sections mentioned below refer to the edition of December 2019.

Chapter 1: Mathematics

- not Section 1.6 (*interpolation*)
- not Section 1.7 (series expansion)

note: Chapter 1 is in itself not examination material, but knowledge of Chapter 1 is necessary in order to be able to solve problems at the level RPO VRS-C

Chapter 2: Compartment systems

• this Chapter can be skipped in its entirety

Chapter 3: Statistics

- Section 3.4 (*significance of a measurement*): not the text after the first example (about *one-tailed probability*)
- not Section 3.5 (exactness, accuracy and precision of a measurement).

Chapter 4: Atomic and nuclear structure

• this Chapter must be studied in its entirety

Chapter 5: Radioactivity

- Section 5.2 (α -decay): not the text about recoil energy
- Section 5.8 (*mother-daughter relationship*): not the text after Figure 5.10 (the complicated Formulas that describe mother-daughter relations); however, one must be familiar with the concept of *radioactive equilibrium* if $T_{1/2}$ (mother) >> $T_{1/2}$ (daughter) and with the fact that in the case of equilibrium mother and daughter activities are virtually equal to each other after several half-lives of the daughter

Chapter 6: Interactions of radiation with matter

• not Section 6.1.1 (*fluence* and *flux*); however, one must be familiar with the concept of *flux density*

- Section 6.1.3 (energy loss and linear range of charged particles): not the text after Formula 6.3; however, one must be familiar with the concepts of linear range and bremsstrahling
- not Section 6.1.4 (*cross section and attenuation coefficient*); however, one must be familiar with the text after Formula 6.10 (about *linear and mass attenuation coefficients*)
- not Section 6.3 (*protons*)
- Section 6.4 (β -particles en electrons): not the text after Formula 6.23
- not Sections 6.4.1 (Čerenkov radiation), 6.4.3 (electromagnetic cascade) and 6.5.1 (Rayleigh scattering)
- Section 6.5.3 (*Compton effect*): not Formula 6.27 and the text after Formula 6.28
- not Sections 6.5.6 (composite materials), 6.6.2 (energy transfer), and 6.6.3 (classification of neutrons)
- not Section 6.6.4 (*neutron activation*); however, one must be familiar with the concepts of *radiative neutron capture* and *thermal neutron*
- Section 6.6.5 (*nuclear fission*): only the first sentence

Chapter 7: Basic dosimetry

• most of this Chapter can be skipped with the exception of Sections 7.1 (*exposure*) and 7.2 (*absorbed dose and kerma*), and the *rules of thumb* $d_Y \approx E_Y/7$ and $d_B >> d_Y$

Chapter 8: Biological effects of radiation

- not Section 8.1.4 (*cell cycle*)
- Section 8.2 (interaction of ionizing radiation with tissue): not Table 8.1 and the text thereafter
- not Sections 8.3 (radiation induced cell death), 8.5.3 (gonads and fertility), and 8.7 (ICRP-103 versus ICRP-60)

Chapter 9: Operational dosimetry

- not Section 9.2 (operational quantities); it is sufficient to know what ambient dose equivalent $H^*(d)$ and personal dose equivalent $H_p(d)$ mean, and that $H^*(10)$ and $H_p(10)$ are good estimators of the effective dose E
- not Sections 9.3 (collective effective dose) and 9.4 (ICRP-103 versus ICRP-60)

Chapter 10: Dosimetry of internal exposure

- Section 10.2.1 (*number of disintegrations*): only the text up to and including the first example
- Section 10.3 (*gastrointestinal model*): only the text up to and including Table 10.6
- Section 10.4 (*lung model*): only the text up to and including the first Paragraph after Figure 10.7; however, Sections 10.4.1 (*gasses and vapors*), 10.4.2. (aerosols), and 10.4.3 (*lung purification*) must be studied
- Section 10.5 (bone model): only the text up to Table 10.11

• not Sections 10.6 (*submersion model*), 10.7 (*measuring internal contamination*), and 10.8 (*ICRP-100 versus ICRP-30*)

note: it is not necessary to be able to calculate the value of and to calculate with the quantities U_S , $SAF(T \leftarrow S)$ and $SEE(T \leftarrow S)$; however, one must understand the models for gastrointestinal tract and lungs, and one must be able to work with the dose conversion coefficient e(50)

Chapter 11: Detection of radiation

- not Sections 11.1.2.2 (digital imaging) and 11.1.2.3 (other semiconductor devices)
- Section 11.2.3 (*thermoluminescence*): only the first Paragraph
- not Sections 11.4.3 (time domain analysis), 11.6.1 (ambient dose equivalent), 11.6.2 (neutron dose), 11.6.3 (personal dose), 11.9.3 (optimal devision of the available measuring time), and 11.9.4 (minimum detectable activity)

Chapter 12: Shielding of external radiation

• not Section 12.7 (*skyshine*)

Chapter 13: Recommendations of the ICRP

- it is recommended to read Section 13.1 (historical overview)
- Sections 13.2.2 (*definitions*) and 13.2.3 (*protection framework during operations*) must be studied in its entirety
- Section 13.3.1 (*occupational exposure*): one must know the *risk factor* = 5% per Sv
- the rest of this Chapter can be skipped

Chapter 14: Laws and regulations

- not Section 14.4.8 (security of radioactive materials)
- not Section 14.7 (*specific regulations for devices*)
- global knowledge of Section 14.9.3 (*consequences of ionizing radiation for the environment* suffices; however, one must be familiar with the concept of *MID* = 0,25 ID in Section 14.9.3.4 (*further analysis*)
- global knowledge of Section 14.9.4 (*risk management guide for practises with open sources in laboratories*) suffices
- not Section 14.10 (other specific regulations)

Chapter 15: Devices

• this chapter can be skipped in its entirety

Chapter 16: Sealed sources

• this chapter must be studied in its entirety

Chapter 17: Open sources

• this chapter must be studied in its entirety

Chapter 18: Fissile materials

• this chapter can be skipped in its entirety

Chapter 19: Background radiation

• most of this Chapter can be skipped with the exception of Section 19.6 (*average* radiation load of the general population)

Chapter 20: Medical supervision of exposed workers

• this chapter can be skipped in its entirety

Chapter 21: Non-ionizing radiation

• this chapter can be skipped in its entirety