Radiation Protection Officer

measurement and control applications dispersible radioactive materials - D

Test exam evaluation open questions

Frits Pleiter

During maintenance on the X-ray device, the service engineer inadvertently keeps his hand in the direct beam.

Equivalent dose rate (in mSv per mAs) at 1 m from the focus.

tube voltage	thickness aluminum filter		
	1 mm	2 mm	3 mm
50 kV	0.07	0.05	0.03
70 kV	0.15	0.09	0.05.
90 kV	0.20	0.13	0.08

Additional data

tube voltage 90 kV anode current 6 mA filter 3 mm aluminum

exposure time 0.3 seconds

distance focus - skin 50 cm

Calculate the equivalent skin dose. (maximal 4 points)

mAs value =
$$6 \text{ mA} \times 0.3 \text{ s} = 1.8 \text{ mAs}$$
 (1 pt)

equivalent dose at 50 cm = 0.5 m
=
$$0.14 \text{ mSv} \times (1 \text{ m} / 0.5 \text{ m})^2 = 0.56 \text{ mSv}$$
 (1 pt)

During inspection of welds, an encapsulated ¹⁹²Ir source falls on the street. The source is returned to the lead container by the RPO using a pair of tongues.

Additional data:

activity 100 GBq

source constant 0.12 µSv m² MBq¹ h¹¹

length of tongues 50 cm exposure time 10 s

The RPO is classified as exposed A-worker

Anser the next questions. (maximal 6 points)

- (a) calculate the effective dose received by the RPO
- (b) calculate the time that the job should have lasted until the annual limit for the effective dose of this worker is reached

activity = 100 GBq =
$$100\times10^3$$
 MBq (1 pt)
time = 10 s = 0.0028 h (1 pt)
equivalent dose at 1 meter
= $0.12 \,\mu\text{Sv} \,\text{m}^2 \,\text{MBq}^{-1} \,\text{h}^{-1} \times 100\times10^3 \,\text{MBq} \times 0.0028 \,\text{h}$
= $34 \,\mu\text{Sv}$ (1 pt)
equivalent dose at $50 \,\text{cm} = 0.5 \,\text{m}$ afstand
= $34 \,\mu\text{Sv} \times (1 \,\text{m} / 0,.5 \,\text{m})^2 = 140 \,\mu\text{Sv} = 0.14 \,\text{mSv}$ (1 pt)
annual limit exposed A-werker = $20 \,\text{mSv}$ (1 pt)
 $\rightarrow \,\text{maximal time} = 0.0028 \,\text{h} \times (20 \,\text{mSv} / 0.14 \,\text{mSv})$
= $0.4 \,\text{h}$ (1 pt)

If the nurse wants to inject a patient with tetrofosfine that is labeled with the radionuclide ^{99m}Tc, the needle slips and she inadvertently injects herself with a droplet of the injection dluid.

Additional data

activity injection fluid 600 MBq

volume injection fluid 2 ml

volume droplet 0.05 ml

e(50)_{injection} 1.1×10⁻¹¹ Sv/Bq

 $e(50)_{inhalation}$ 2,9×10⁻¹¹ Sv/Bq

the nurse is not an exposed worker

Answer the next questions. (maximal 4 points)

- (a) calculate the activity of the droplet
- (b) calculate the committed effective dose due to this accident
- (c) check whether the annual limit for the nurse is exceeded justify your answer

activity of droplet $= 600 \text{ MBq} \times (0.05 \text{ mI} / 2 \text{ mI})$ $= 600 \text{ MBq} \times 0.025 = 15 \text{ MBq}$ (1.5 pt) $e(50) = e(50)_{\text{injection}} = 1.1 \times 10^{-10} \text{ Sv/Bq}$ $E(50) = 1.1 \times 10^{-11} \text{ Sv/Bq} \times 15 \times 10^{6} \text{ MBq}$ $= 17 \times 10^{-5} \text{ Sv} = 0.17 \text{ mSv}$

In the radionuclide laboratory, a nonvolatile compound is labeled with the radionuclide ³⁵S.

Additional data

laboratory class

workplace

e(50)_{ingestion}

D

table

1.4×10⁻¹⁰ Sv/Bq

 $e(50)_{inhalation}$ 8.0×10⁻¹⁰ Sv/Bq

working time per labeling half a day = 4 hours per week

activity per labeling 100 kBq

Answer the next questions. (maximal 6 points)

- (a) calculate the maximum activity A_{max} that may be handled
- (b) calculate the contribution of this practice to the load factor B

Directive on radionuclide laboratories

р	phase of material / procedure
-4	gass / powder in opren system liquid close to boiling point strongly splashing manipulation
-3	volatile nuclide (³ H as vapour, iodine) powder in closed system boiling in closed system shaking, mixing on a vortex, centrifugation storage of noble gas in closed system
-2	simple procedure (RIA) labeling with nonvolatile material
-1	very simple wet work pipeting of nonvolatile material procedure in closed system eluting of tecnetium pulling up syringe labeling in closed system measurement on closed ampoule storage in working area

q	laboratory
0	outside laboratory
1	D-laboratory
2	C-laboratory
3	B-laboratory

r	local ventilation
0	table witout loca; ventilation
1	table with local ventilation fume hood (not NEN-EN 14175)
2	fume hood (NEN-EN 14175) biohazard cabinet (class 2)
3	biohazard cabinet (classe 3) glove box

labeling nonvolatile compound
$$p = -2$$
 (0.5 pt)
D-laboratory $q = 1$ (0.5 pt)
table $r = 0$ (0.5 pt)
 $e(50) = e(50)_{inhalation} = 8.0 \times 10^{-10} \text{ Sv/Bq}$ (1 pt)

maximum activity

$$A_{\text{max}} = 0.02 \times 10^{\text{p+q+r}} / \text{ e}(50)_{\text{inhalation}}$$
 (1 pt)
 $A_{\text{max}} = 0.02 \times 10^{-2+1+0} / 8.0 \times 10^{-10}$
 $= 2.5 \times 10^6 \text{ Bq} = 2.5 \text{ MBq}$ (1.5 pt)

activity per practice = 100 kBq = 0.1 MBq working time per practice = 4 hours per week load factor

B =
$$(4 \text{ hours} / 40 \text{ hours}) \times (0.1 \text{ MBq} / 2.5 \text{ MBq})$$

= $0.1 \times 0.04 = 0.004$ (1 pt)