
Author Queries
Journal: Journal of the Royal Society Interface

Manuscript: rsif20110730

Q1 Please provide expansion of the acronym MIT.

Q2 Please specify the location of the publisher for reference [1].



Hemispherical Brillouin zone
imaging of a diamond-type
biological photonic crystal

Bodo D. Wilts1,*, Kristel Michielsen2, Hans De Raedt1

and Doekele G. Stavenga1

1Computational Physics, Zernike Institute for Advanced Materials, University of Groningen,
Nijenborgh 4, 9747 AG, Groningen, The Netherlands
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The brilliant structural body colours of many animals are created by three-dimensional biological
photonic crystals that act as wavelength-specific reflectors. Here, we report a study on the vividly
coloured scales of the diamond weevil, Entimus imperialis. Electron microscopy identified
the chitin and air assemblies inside the scales as domains of a single-network diamond (Fd3m)
photonic crystal. We visualized the topology of the first Brillouin zone (FBZ) by imaging scattero-
metry, and we reconstructed the complete photonic band structure diagram (PBSD) of the
chitinous photonic crystal from reflectance spectra. Comparison with calculated PBSDs indeed
showed a perfect overlap. The unique method of non-invasive hemispherical imaging of the
FBZ provides key insights for the investigation of photonic crystals in the visible wavelength
range. The characterized extremely large biophotonic nanostructures of E. imperialis are structu-
rally optimized for high reflectance and may thus bewell-suited for use as a template for producing
novel photonic devices, e.g. through biomimicry or direct infiltration from dielectric material.

Keywords: photonic bandgap materials; structural colour; Coleoptera;
biomimetics; biomaterials; iridescence

1. INTRODUCTION

The brilliant, iridescent body colours of many beetles,
birds, butterflies and fish are created by the interaction
of light with nanostructured materials in the animals’
outer body layers, i.e. their exoskeleton, feathers and
scales [1–4]. Beetles and weevils, in particular, employ a
large range of photonic structures to produce iridescence,
e.g. multi-layers [5], birefringent or dichroic circular polar-
izing layers [6] and three-dimensional biological photonic
crystals [7,8]. The refractive index of these structures is
periodically modulated on the length scale of visible
light, so that (constructive) interference of light is
observed in this wavelength range [2,4,9]. Photonic crys-
tals are thus the optical analogue of semiconductor
crystals in that the photonic structure creates photonic
bandgaps, over which a range of wavelengths of light
can neither be emitted nor propagated [9].

In insects, three-dimensional photonic crystals are
usually fabricated by interconnecting networks of air
(refractive index, n ¼ 1) and the dielectric cuticular bio-
material chitin (n ¼ 1.56) [10,11] that form usually one
of the three simplest triply periodic bicontinuous cubic
minimal surfaces: primitive cubic (P), diamond (D) or
gyroid (G) [12–15]. A precise characterization of photonic

crystals reflecting in the visible wavelength range is criti-
cal to understand their optical and biological function.
Structural knowledge of the biological photonic crystals
will further inspire the design and replication of biomi-
metic devices [16,17]. Presently, the routine production
of artificial, visibly active photonic crystals is still a
considerable challenge [18–20].

A precise angular-resolved measurement of the photo-
nic band structure diagram (PBSD) of three-dimensional
biological photonic crystals is still lacking, as previous
publications have mainly focused on partial photonic
bandgaps in high-symmetry directions [7,14,21]. Here,
we apply hemispherical Brillouin zone imaging using an
imaging scatterometry [22] to completely characterize
the three-dimensional biological photonic crystal struc-
tures in the wing scales of the diamond weevil, Entimus
imperialis. We measured the complete PBSD and
determined the symmetry of the underlying unit cell
structure of the photonic crystal by imaging the topology
of the first Brillouin zone (FBZ), a unique identifier of the
structural symmetry.

2. MATERIAL AND METHODS

2.1. Animals

A specimen of the diamond weevil, E. imperialis (For-
ster 1771; Curculionidae: Entiminae: Entimini), of the
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Coleoptera collection in the Natural History Museum
Naturalis (Leiden, The Netherlands; curator Dr J.
Krikken) was photographed by a Canon EOS 30D
camera equipped with an F70 macro-objective and a
Nikon SB-800 flash (figure 1a). Details of the scale
arrangement on the elytra of a specimen obtained from
Prof. J.-P. Vigneron (University of Namur, Belgium)
were photographed by a Zeiss Universal Microscope
(Carl Zeiss AG, Oberkochen, Germany), applying
epi-illumination and using a Kappa DX-40 digital
camera (Kappa optronics GmbH, Gleichen, Germany;
figures 1b,c and 2a).

2.2. Electron microscopy

The structure of the wing scales was investigated,
after sputtering with palladium, by scanning electron
microscopy (SEM) using a Philips XL-30 ESEM
(Philips, Eindhoven, The Netherlands) and by trans-
mission electron microscopy (TEM) using a Philips
CM-100 bioelectron microscope operated at 80 kV.
For TEM, the scales were embedded in a mixture of
Epon and Araldite, following a standard embedding
procedure [5].

2.3. Imaging scatterometry

The far-field angular distribution of the light scattered
from single domains on single scales (figure 3), glued to

the end of pulled glass micropipettes, was visualized by
an imaging scatterometer [22]. The scatterometer is
built around an ellipsoidal mirror that collects light
from a full hemisphere around its first focal point where
the sample is positioned. A Xenon lamp was used for illu-
mination and the spot size diameter was approximately
15 mm. A small piece of magnesium oxide served as a
white diffuser reference object. Scatterogram images
were acquired by an Olympus DP70 camera and were
subsequently corrected for geometrical distortions using
a MATLAB routine. Reflectance spectra (figure 4a,b)
were measured by a CCD detector array spectrometer
(AvaSpec-2048-2; Avantes, Eerbeek, the Netherlands)
with an effective aperture of approximately 48 [5].

2.4. Photonic band structure diagram
simulations

PBSDs for the single-network diamond photonic crystal
in a face-centred cubic (FCC) basis were simulated by
the MIT Q1photonics bandgap package (http://ab-initio.
mit.edu/mpb) [23]. The dielectric function was

(a)

(b) (c)

Figure 1. The diamond weevil, Entimus imperialis, and its
scale organization. (a) The intact animal with the black
elytra where numerous pits are studded with yellow-green
scales. Scale bar, 1 cm. (b) A single pit as seen in an epi-illu-
mination microscope, showing highly reflective scales of
different colours. Scale bar, 200 mm. (c) A single scale with
a few differently coloured domains. Scale bar, 20 mm.

(a)

(b)

(c)

Figure 2. Microstructure of the scales of Entimus imperialis.
(a) Highly magnified image of a single scale at a zone boundary.
Note the different lamellar arrangements in the two areas. Scale
bar, 5mm. (b) Scanning electron microscopy of a cross section of
a fractured scale showing a highly organized interior of tilted
sheets with square symmetry. Scale bar, 2mm. (c) Transmission
electron microscopy (TEM) image of the nanostructure of an
E. imperialis scale. The red-bordered inset shows a simulated
(3 2 12) TEM cross section of a level-set single-network
diamond-type crystal. Scale bar, 2mm.
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generated using the level-set equation for a single
diamond structure by [12,13]:

cos z sinðx þ yÞ þ sin z cosðx � yÞ ¼ t; ð2:1Þ

where the parameter t determines the filling fraction of
each network in the unit cell. To simulate a dielectric
single-network diamond structure, the dielectric function
f(x,y,z) was chosen such that n(x,y,z) ¼ 1.56 if f(x,y,z) �
t, and n(x,y,z) ¼ 1 if f(x,y,z) . t, where n(x,y,z) is the
refractive index at the point (x,y,z) of the unit cell. We
confirmed our photonic band structure model by chan-
ging the dielectric constant of the material to that of
silicon (e ¼ 11.9) to match the calculations of Michielsen
& Kole [24]. As an additional check, we changed the top-
ology to a chitin-based single-network gyroid and found
full agreement with the results of Saranathan et al. [14].

3. RESULTS AND DISCUSSION

The diamond weevil, E. imperialis, a large weevil mainly
found in Brazil [25], appeared to be ideal for studying
the photonic responses of biological photonic crystals.
The weevil’s body is marked by rows of bright green
dots on an otherwise black body (figure 1a). Investigation
of the elytra by a light microscope reveals that the shiny
dots are pits decorated with numerous scales, each of
which has large, coloured domains with highly directional
reflections (figure 1b). Upon slight rotation of the scales,
reflecting domains vanish and new ones appear. These
amazing scales have been studied since the early twentieth
century [2]. Entimus imperialis appears to be unique
when compared with related weevils [7,26,27], but also
butterflies [13,14], in that its scales have very large
photonic domains, up to approximately 50 mm2 in size
(figure 1c), a factor of 5–10 larger in size than the photo-
nic domains found in other species. The colours of the
domains range from cyan blue to yellow orange.

In the differently coloured domains, distinctly
oriented lines can be observed (figure 2a), suggesting
the presence of an ordered photonic structure inside the

scales. Therefore, we examined the internal scale struc-
ture by SEM and TEM. In SEM, the interior of the
scales appeared to contain highly ordered stacks of chiti-
nous sheets with air cavities, having either square or
hexagonal symmetry, enveloped by a thin film cortex of
roughly 1 mm thickness (figure 2b and electronic sup-
plementary material, figure S1). To fully characterize
the structure, we matched TEM cross sections with
cross sections derived from various level-set minimal
surface models (figure 2c, inset) [12–14,28]. The
observed motifs are characteristic for simulated cross
sections of single-network diamond crystals (point
group Fd3m). No overlap with single-network gyroid
(I4132) or simple primitive (Pm3m) cross sections were
observed. We thus concluded that the chitinous structure
inside the scales is a single-network diamond photonic
crystal. The photonic crystals inside the scales form
a layer of fused photonic crystal domains, similar to
the wing scales of certain papilionid butterflies with
single-network gyroid photonic crystals [4,14].

The material composition, and thus the material-
filling fraction, of a single-network diamond photonic
crystal can be expressed by the level-set parameter t
that defines the triply periodic intermaterial dividing
surface (IMDS). In real space, the network is defined
by the Schwartz’ D minimal surface via cos z sin(x þ y)þ
sin z cos(x – y)¼ t [12,13,24]. Quantitative analysis of
different regions in individual scales as well as matching
of TEM cross sections with the computationally simulated
level-set cross sections yielded a cubic lattice constant a¼
445+10 nm and a level-set parameter t¼ 20.50+0.08,
corresponding to a chitin-filling fraction of 0.30+0.04.
The obtained values are comparable with the anatomical
characteristics reported for scales of other beetles with
a chitinous diamond photonic crystal [7,8]. The cubic
lattice constant parameters for butterflies with gyroid-
type photonic crystals are considerably smaller, while the
chitin-filling fraction is comparable [13,28].

We have used the scales of the diamond weevil to
directly visualize various symmetry orientations and
the angular spectral response of differently oriented

(a) (b) (c)
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Figure 3. Hemispherical imaging of the first Brillouin zone (FBZ) of a single-network diamond photonic crystal. (a) Image of the hemi-
spherical reflectance of a single-scale domain. The shadow of the glass pipette holding the scale is seen at 09.00. The white-dashed
circles indicate scattering angles of 58, 308, 608 and 908. (b) Sketch of the FBZ of a diamond-type crystal showing high-symmetry
points (L–U–X–W–K) forming the irreducible BZ (red line). The (1 0 0) orientation is pointing upwards. (c) Simulated scattero-
gram of an ideal diamond-type photonic crystal, approximating a (7 7 1) orientation. The spatial directions corresponding to the
irreducible BZ and the high-symmetry points are indicated.
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individual photonic crystals using an imaging scatterome-
try [22]. The point spread function for narrow beam
illumination appeared to be equal to the angular width
of the incoming light beam (electronic supplementary
material, figure S2). This allowed illumination of single-
scale domains with a wide-aperture white-light beam to
obtain an aberration-free image of the complete hemi-
spherical reflectance [5]. We found distinct orientations
of (large) orange and (small) green faces, surrounded
by a cyan blue-coloured border (figure 3a). The green
faces are surrounded by four orange faces and thus have
a fourfold coordination, whereas the orange faces have a
sixfold coordination and are surrounded each by three
orange and three green faces.

The microstructure and orientation of a photonic
crystal determines the photonic response to incident
light. Photonic crystals with a complete photonic band-
gap have an angle-independent reflection in a certain
wavelength range. However, most biological photonic
crystals do not possess a complete photonic bandgap,
owing to the small refractive index contrast n0/n of
organic material against air (for chitin and air this

contrast is n0/n ¼ 1.56) [9]. For photonic structures
with a low-refractive index contrast, the orientation of
the crystal becomes highly important because a
change in the crystal orientation or the angle of light
incidence causes a different reflectance spectrum. Gen-
erally, the faces of the FBZ fulfil Bragg’s law and thus
approximately determine the peak wavelength of the
reflected light, or, more accurately, the central wave-
length of the photonic bandgap [28]. The FBZ is the
primitive cell of the structure in reciprocal space and
thus is inevitably connected to the symmetry of the
unit cell in reciprocal space [9]. A single-network dia-
mond photonic crystal has a FCC unit cell in real
space, and therefore the faces of the FBZ form a trun-
cated octahedron having eight hexagonal and six
smaller square faces with base-centred cubic symmetry
(BCC; figure 3b). High-symmetry points in the FBZ
are of special interest, because they form the irreducible
BZ, a diagnostic characteristic for any given photonic
structure [9,28].

To see whether the measured hemispherical reflec-
tance profile is directly connected to the structure of
the FBZ, we simulated the spatial reflection pattern
from an ideal diamond crystal structure for different
orientations. Indeed, a diamond crystal with (7 7 1)-
orientation closely matches the measured reflectance
profile (figure 3a,c). The symmetry and size of the
coloured areas directly correspond to the different
faces of the truncated octahedron forming the FBZ
(figure 3; cf. Poladian et al. [28]). The hemispherical
reflectance profile does not conform to the predictions
from alternative cubic minimal surfaces as P or single G.
For both of these cubic minimal surfaces, the spatial
scattering is predicted to be very different in shape as
well as in the spectral width (electronic supplementary
material, figure S3). The observed aberrations at scatter-
ing angles greater than 708 can be attributed to the slight
curvature of the investigated scales (figure 1c and
electronic supplementary material, S2).

Although the FBZ for a diamond photonic crystal has
been assessed in the microwave regime [29], here we for
the first time measured the FBZ for a diamond photonic
crystal reflecting visible light. Mapping the topology of
the FBZ by imaging of the angle-dependent reflectance
allows direct, non-invasive discrimination of different
crystal types as well as their orientation. Previously,
this was possible only via indirect TEM methods and
subsequent mapping of crystal orientations [7,13,14].

The PBSD determines the reflectance and the
iridescence of a given crystal structure. A spectropho-
tometer connected to the imaging scatterometer allowed
measurement of the reflectance spectrum in angular
areas of approximately 48 at any given point of the scatter-
ogram [5]. Figure 4a,b shows band structure diagrams
of the diamond weevil’s diamond biological photonic
crystal measured along two user-defined paths in the
scatterograms. This flexible measurement is a significant
improvement to previous techniques that were limited to
measurements along linear rotations of goniometers [29].
Note that the reflectance spectra in essence measure the
photonic bandgapdiagram.The larger thephotonic band-
gap width in a particular direction, i.e. the distance
between two adjacent photonic bands, the broader is the
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Figure 4. Photonic band structure diagrams (PBSDs).
Measured (a,b) and simulated (c,d) PBSDs for a single-
network diamond-type photonic crystal (Fd 3m) along the
paths (a,c) L–K–L and (b,d) U–X–W–K, respectively.
The grey areas in (c,d) indicate the photonic bandgap of the
investigated structure, corresponding to the measured reflec-
tance bands in (a,b). In the simulation, the dielectric
constant was e ¼ 2.45 and the chitin-filling fraction was
approximately 0.3 (t ¼ 20.5). For the wavelength conversion
in (c,d), the cubic lattice constant of the photonic crystal was
set to a ¼ 445 nm (see also electronic supplementary material,
figure S4). The inset shows a rendered model of the single
diamond photonic crystal.
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expected reflectance spectrum (corresponding to different
grey shades in figure 4c,d). We calculated the PBSD of a
single diamond photonic crystal by modelling the photo-
nic crystal in the scales of E. imperialis, using the MIT
photonic band structure package and the structural par-
ameters obtained from electron microscopy (figure 4c,d
and electronic supplementary material, figure S4) [9,23].
In the simulation, the dielectric constant of the chitin
network was set to e ¼ n2 � 2.45 (index-matching exper-
iments yielded a real refractive index of the chitin n ¼
1.56; scale absorption was negligible). We found excellent
agreement between the measured and simulated PBSDs
(figure 4). Therefore, by measuring the angular spectral
dependency in addition to the topology of the FBZ,
we can completely characterize the structure of any
photonic crystal.

The spectral measurements provide additional
insight, as they are characteristic for the investigated
crystal type. For instance, the maximal wavelength
ratio in the spectral state space, i.e. the range of observa-
ble spectra reflected from the structure, depends on the
type of crystal. For diamond-, gyroid- and simple cubic-
type photonic crystals the maximal peak wavelength
ratio is 1.29, 1.41 and 1.72, respectively [28]. For
E. imperialis, we determined a ratio of 1.27+0.05, con-
firming the theoretical prediction for a single diamond
photonic crystal.

Interestingly, the complex three-dimensional arrange-
ment of air and chitin in the wing scales of the diamond
weevil may provide an ideal template to achieve a com-
plete photonic bandgap material that reflects in the
visible wavelength range, especially because photonic
crystals with the largest photonic bandgap are based on
the diamond morphology [20]. We thus investigated the
dependency of the photonic bandgap width, i.e. the Q-
factor or gap–midgap ratio Dv/vm, where vm is the
midgap frequency and Dv the bandgap width of the par-
tial bandgap in the high-symmetry direction [9], for
different filling fractions of the chitin network by varying
the threshold parameter of the IMDS (figure 5). A rela-
tively broad plateau of maximal reflectance results for
chitin-filling fractions between 0.3 and 0.4. Indeed,
for the material-filling fraction of 0.30+ 0.04, the value
found for the scales of E. imperialis, the bandgap width
is close to optimal for creating a maximal photonic
response, as here the partial bandgaps are largest.

We further investigated the refractive index depen-
dency of the diamond photonic crystal and found that
a complete photonic bandgap opens for relatively low-
refractive index contrasts of n0/n � 2 when using the
filling fraction of the diamond weevil scales (electronic
supplementary material, figure S5; see also Galusha
et al. [30]). A photonic structure with this refractive
index contrast can be achieved by direct dielectric infil-
tration [30] or metal coating [31], whereas a change of
the unit cell size could be achieved by hydrogel infiltra-
tion [32]. The uncommonly large single-network
diamond biological photonic crystals of E. imperialis
will thus be a well-suited template to further explore
the photonic properties of visibly active photonic crys-
tals that could ultimately lead to novel, efficient
optical devices as, e.g. all-integrated optical circuits
[33] or high-efficiency solar cells [34].

4. CONCLUSIONS

The presented technique of hemispherical Brillouin
zone imaging using an imaging scatterometer permits
the complete non-destructive assessment of important
photonic parameters of any photonic bandgap material
because it is not limited to biological samples. We have
shown that the type and orientation of individual, dif-
ferently oriented biological photonic crystals of the
diamond weevil can be assessed by direct visualization
of the FBZ. Furthermore, the complete PBSD of a bio-
logical photonic crystal could be measured for any given
direction in the hemispherical reflectance image. There-
fore, the pureness of artificially created photonic
crystals that act in the visible wavelength range, e.g.
structured polymer films [35], can be characterized.
The technique also allows direct imaging of the top-
ology of the FBZ of novel photonic structures, such as
photonic quasi-crystals [29].
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